Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режимы резания для работ на токарных станках

РЕЖИМЫ РЕЗАНИЯ ДЛЯ РАБОТ НА ТОКАРНЫХ СТАНКАХ  [c.502]

Режимы резания для работ на токарных станках  [c.503]

См., например, общемашиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных станках. Серийное производство. Машгиз, 1960.  [c.164]

Подробные сведения о режимах резания при зенкеровании имеются в специальной литературе и- справочниках например, в справочнике Общемашиностроительные нормативы режимов резания и времени для нормирования работ на токарных станках . Серийное производство, Машгиз, 1960.  [c.185]


Общемашиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных станках. Серийное производство. М., Машгиз, 1960. 224 с. (ЦБТИ по труду при Научно-исследовательском институте труда).  [c.389]

Силы, действующие на резец, можно подсчитать более точно по специальным формулам (см. Центральное бюро промышленных нормативов по труду. Общемашиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных станках. Машгиз, 1959).  [c.288]

Справочник рассчитан на учащихся профессионально-технических учебных заведений и молодых токарей, имеющих квалификацию 1—3-го разрядов. В нем приведены основные сведения, необходимые для выполнения работ на токарных станках. Основное внимание уделено выбору инструмента, приспособлений и режимов резания при обработке наружных и внутренних цилиндрических, конусных и фасонных поверхностей, а также прн нарезании резьб. В справочнике помещены материалы по теории резания, устройству токарных станков, высокопроизводительному резанию, техническому нормированию токарных работ и организации рабочего места токаря, приведены сведения о взаимозаменяемости и точности обработки, измерительному инструменту, допускам и посадкам, механическим свойствам металлов и др.  [c.3]

Министров СССР по вопросам труда и заработной платы. Общемашиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных станках , Машгиз, 1959. Везде в Справочнике эта книга для краткости называется Нормативы режимов резания .  [c.9]

Общемашиностроительные нормативы режимов резания и времени для технического нормирования а) на токарных станках, б) на токарно-автоматные работы. Машгиз, 1959.  [c.96]

Ниже приведены режимы резания для следующих видов работ, выполняемых на малых токарных станках различных  [c.502]

Общемашиностроительные нормативы режимов резания. Для технического нормирования работ на металлорежущих станках. Ч. I. Токарные карусельные, токарно-револьверные, алмазно-расточные, сверлильные, строгальные, долбежные и фрезерные станки. М., Машиностроение , 1967, с. 15.  [c.439]

Экономическая точность обработки на токарных станках не превышает 3-го класса точности, хотя в отдельных случаях необходимо выполнять обработку по 2-му классу. Достижение высокой точности сопряжено с целым рядом трудностей, легко устранимых при других методах обработки поверхностей, например шлифовании, развертывании, протягивании и т. п. Для выполнения точных работ прежде всего нужны рабочие высокой квалификации. Установка резца на размер и промеры требуют большой затраты вспомогательного времени. Износ резца в процессе обработки не обеспечивает одинакового диаметра по всей длине вала. Высокая степень точности обычно сочетается с высокой чистотой, достижение которой требует тщательной доводки режущих кромок резца и соответствующего подбора режимов резания, к тому же нет уверенности в достижении требуемых результатов. Поэтому при обработке поверхностей вращения стальных и чугунных деталей с точностью выше 4-го класса ограничиваются получистовым точением под шлифование, а окончательная точность размеров обеспечивается шлифованием.  [c.104]


При обработке резанием большинства конструкционных материалов и сплавов образуются сливные стружки, занимающие объемы, в десятки раз превышающие объемы снятого материала. Это сильно затрудняет работу обслуживающего персонала, угрожает безопасности в работе, часто приводит к нарушению режима работы станка, преждевременному выходу из строя режущего инструмента, порче обработанной поверхности и др. Одним из путей решения этой проблемы при обработке на станках с ЧПУ (и особенно в гибких автоматизированных производствах) является дробление стружки и удаление ее со станка. Для дробления стружки на станках с ЧПУ применяют инструменты с порожками, со стружкоделительными канавками, на токарных станках с ЧПУ применяют способ кинематического дробления. Для удаления  [c.488]

Общемашиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных, фрезерных, сверлильных станках. Серийное, крупносерийное и массовое производство. М. Машиностроение,  [c.389]

На токарных станках различных типов ступенчатые валы можно обтачивать с помощью гидрокопировального суппорта (рис. 79). Это устройство позволяет обтачивать заготовки с цилиндрическими, коническими и фасонными поверхностями и подрезать торцы, расположенные под углом 90° к оси, методом автоматического копирования по эталонной детали или плоскому копиру. Применение гидрокопировальных суппортов значительно уменьшает вспомогательное время, позволяет применять более высокие режимы резания, чем при работе с ручным выключением подачи, резко сократить число измерений. Гидрокопировальное устройство имеет суппорт 1 (рис. 79), приспособление 3 для установки копира и бак 2. Суппорт устанавливают направляющими на продольные салазки. Резцедержатель 4 закрепляют в передней части основания во время работы гидрокопировального устройства он не работает. В задней части основания сделаны направляющие для корпуса цилиндра, расположенные под углом 45" к направлению продольной подачи. По этим  [c.118]

В качестве примера рассмотрим процесс получения управляющей программы для станков с ЧПУ при обработке деталей на токарных станках, Процессором являются программы синтеза операционной технологии. Исходная информация для проектирования чертеж детали, метод получения заготовки, тип оборудования. Синтез выполняется на основе обобщенного технологического процесса-аналога, Результат синтеза — модель объекта в виде совокупности контуров операционных эскизов, получаемых на отдельных последовательно выполняемых операциях обработки детали (см. рис. 8.3, а, б). Постпроцессор включает алгоритмы и программы, которые для каждой операции решают задачи определения количества требуемых инструментов и последовательности их работы расчета геометрии режущей части назначения режимов резания определения траекторий перемещений инструмен-  [c.223]

Пример применения метода регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате (рис, 3.55). Задаются исходные данные (размеры и материалы детали, режущий инструмент, глубина резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования) требуется найти режим обработки (sj, п,), удовлетворяющий условиям по точности обработки шероховатости поверхности  [c.136]

При скоростном нарезании наружной и внутренней резьбы применяется резец, армированный твёрдым сплавом. В процессе работы вращаются заготовка и резец, закреплённый в специальной державке. За один оборот заготовки инструмент подаётся на один шаг, т. е. работа осуществляется по такой же схеме, как и при фрезеровании резьбы гребенчатой фрезой. Нарезание может производиться с использованием специального приспособления на токарных, резьбофрезерных или круглошлифовальных станках. Диаметр нарезаемой резьбы 20—220 мм. Режимы обработки скорость резания 150 — 450 м/ман, охлаждение не применяется. Нарезание происходит за один проход. Для улучшения обрабатываемой поверхности нарезание производится по направлению подачи. Производительность скоростного метода примерно в 2,5—3,5 раза выше обычного резьбофрезерования.  [c.389]


За расчетное число оборотов шпинделя принимают такое число оборотов, при котором нагрузка на элементы привода максимальная. Расчетное число оборотов можно определять, исходя из режимов резания, по заданной величине наибольшего крутящего момента или силы резания, на основе анализа условий эксплуатации станков. В коробках скоростей универсальных, в частности, токарных, револьверных и консольно-фрезерных станков за расчетное число оборотов обычно принимают минимальное число оборотов, начиная с которого работа идет с использованием полной мощности (нижнюю часть диапазона чисел оборотов в основном используют для операций, не требующих большой мощности — развертывания, зачистки резьбы и т. п.). Для универсальных станков (револьверных, карусельных, консольно-фрезерных, расточных и токарных, за исключением широкоуниверсальных токарных станков среднего размера) в качестве расчетного числа оборотов шпинделя можно принять число оборотов, соответствующее верхней ступени нижней трети диапазона для широкоуниверсальных токарных станков средних размеров — число оборотов, соответствующее нижней ступени второй трети диапазона для универсальных сверлильных станков средних размеров — число оборотов, соответствующее верхней ступени нижней четверти диапазона [5].  [c.563]

Используют также различные методы поиска, исключающие полный перебор (например, регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате). Задают исходные данные (размеры и материал детали, режущий инструмент, глубину резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования). Требуется найти режим обработки удовлетворяющий условиям по точности обработки, шероховатости поверхности, мощности, расходуемой на резание, кинематике станка и приводящий целевую функцию к максимуму.  [c.221]

Испытывать станки на виброустойчивость необходимо для устранения возникающей вибрации, и испытания проводят главным образом при работе станка, причем регистрируются шероховатость обработанной поверхности (соответствие поверхности определенных образцов) и отсутствие вибрационного следа дробления. Для определения жесткости и виброустойчивости станка во время работы желательно также проводить испытание на вибрационном режиме. Так, на токарных автоматах применяют поперечное резание широким резцом (для средних станков ширина разца 40—60 мм, для крупных  [c.424]

В автоматизированных линиях для токарной обработки применены многорезцовые автоматы с гидроприводом. Технологический процесс изготовления валов-роторов разных размеров также унифицирован (рис. 261 >. Обработка производится в центрах, для зажима используются цанговые патроны. Один из суппортов имеет продольный ход и производит обработку ступенчатого профиля, другой суппорт является подрезным. Станки оснащены твердосплавным инструментом и работают на высоких режимах резания. Токарные автоматы снабжены автоматическими подналадчиками.  [c.493]

Станочные приспособления, применяемые для установки и закрепления на станках обрабатываемых заготовок. В зависимости от вида механической обработки эти приспособления подразделяют на приспособления для сверлильных, фрезерных, расточных, токарных,-шлифовальных станков и др. Станочные приспособления составляют 80...90% в общем парке технологической оснастки. Применение их обеспечивает а) повышение производительности труда за счет сокращения времени на установку и закрепление заготовок, при частичном или полном перекрытии вспомогательного времени машинным и при уменьшении последнего посредством многоместной обработки, совмещения технологических переходов и повышения режимов резания б) повышение точности обработки благодаря устранению выверки при установке и связанных с ней погрешностей в) облегчение условий станочников г) расширение технологических возможностей оборудования д) повышение безопасности работы.  [c.137]

Испытание станков под нагрузкой имеет целью определить его работоспособность в нормальных условиях, когда заготовку обтачивают при средних числах оборотов шпинделя в минуту, а сечение снимаемой стружки выбирают С таким расчетом, чтобы загрузить станок до номинальной мощности. Испытания продолжаются не менее 30 мин., при этом контролируют работу всех узлов и механизмов станка, в том числе муфт включения, тормозных и предохранительных устройств. Если универсальный токарный станок предназначен для выполнения как обдирочных, так и чистовых операций, то он должен испытываться на обоих режимах резания.  [c.76]

Приведены новые прогрессивные и перспективные конструкции режущих инструментов различных типов и технологические процессы их изготовления. Даны рекомендации по дроблению стружки при работе на токарных станках и области применения инструментальных материалов. Режимы резания по каждому виду обработки изложены в виде матричных таблиц для каждой группы обрабатываемых материалов и поправочных коэффициентов на скорость резания и подачу для различных условий обработки. Такое изложение режимов резания пмволяет выполнять их расчет на ЭВМ при разработке технологических процессов с использованием САПР.  [c.2]

Здесь Ср, лгр и Ур — коэффициенты оии зависят от материала и условий обработки. Значения этих коэффициентов даны в специальных справочниках (см., напр., Общемащиностроительные нормативы режимов резания и времени для технического нормирования работ на токарных станках. Серийное производство . Мащгиз, М., 1960).  [c.35]


Ориентировочные режимы резания при токарных работах приведены в табл. 39—68. Более точные и подробные сведения по режимам см. Обш,емашиностроительные нормативы режимов резания для технического нормирования работ на металлорежущих станках . Часть 1, Машиностроение , 1967.  [c.290]

Здесь I — размер поверхности детали в мм, по которой осуществляется перемещение инструмента или самой детали в направлении подачи (для различных видов обработки этот размер определяется по-разному — см. табл. 65) /1 — величина врезания в мм, зависящая от геометрических параметров заборной— режущей части инструмента, отдельных элементов режима резания и размеров обрабатываемых поверхностей (для работы различными инструментами определяется по соответствующим формулам — см. табл. 65) для обеспечения свободного подхода инструмента к обрабатываемой поверхности с рабочей подачей расчётную величину врезания следует увеличивать на 0,5-н 2 мм — перебег инструмента или детали в направлении подачи в ММ, во всех случаях, когда инструмент или обрабатываемая деталь относительно инструмента и.меет возможность свободного перемещения за плоскость обработки, прибавляется небольшая величина перебега в пределах 1-Т-5 мм в зависимости от размеров обработки величина перебега к расчётной длине не прибавляется, если рпбота ведётся в упор, например, подрезка уступа, прореза-ние канавок, глухое сверление и т. п. — дополнительная длина в мм. на взятие пробных стружек, имеющая место в условиях единичного, мелкосерийного и серийного производств при работе на универсальных станках (токарных, строгальных, фрезерных и др.) со взятием пробных стружек. В зависимости от измерительного инструмента и измеряемого размера дополнительные длины на взяти пробных стружек колеблются от 3 до 10 мм. При взятии двух пробных стружек дополнительная длина удваивается.  [c.482]

Токарь 5-г о разряда. Обработка деталей средней сложности по 2-му и 3-му классам точности на токарных станках различных моделей. Обтачивание и растачивание цилиндрических, конических и эксцентрических поверхностей. Нарезание наружных и внутренних остроугольных прямоугольных и трапецоидаль-ных однозаходных резьб. Глубокое сверление и чистовая обработка отверстий. Обработка точных фасонных выпуклых Т1 вогнутых поверхностей с применением шаблонов и приспособлений. Установление наивыгоднейшего режима резания, сообразуясь с инструментом и обрабатываемым материалом или по технологической карте. Подсчет и подбор шестёрен для нарезки резьбы и обточки конусов. Правильное применение режущего и мерительного инструмента, проверка правильности показаний мерительного инструмента. Заправка и заточка режущего инструмента средней сложности по шаблонам и угломеру. Выполнение работ по чертежам и эскизам средней сложности. Пользование паспортом станка и таблицами для нарезания резьбы. Определение причин ненормальной работы станка и предупреждение брака. Устранение мелких неисправностей станка и его регулировка, не требующие разборки.  [c.101]

Токарь 4-го разряда. Обработка деталей средней сложности на токарном станке определенной конструкции по 3-му и 4-му классам точности и но 2-му классу точности при пользовании предельными калибрами Обтачивание и растачивание цилиндрических и конических поверхностей. Нарезание наружных и внутренних однозаходных резьб остроугольного и прямоугольного профилей. Установление режима резания под руководством мастера или по технологической карте. Правильное применение режущего и мерительного инструмента и приспособлений. Подсчет и подбор шестерен для на-везания резьбы. Заточка нормального инструмента. Настройка станка. Выполнение работ по чертежам и эскизам средней сложности. Определение причин ненормальной работы станка и предупреждение брака.  [c.101]

Пример 15. Определить с помощью нормативов режимов резания мощность, затрачиваемую на резание, при обтачивании резцом из твердого сплава заготовки из стали 40Х с пределом прочности Ов = = 700 МН/м ( 70 кгс/мм ). Режим резания t = 3,8 мм s = = 0,7 мм/об V = 105 м/мин ( 1,75 м/с). Геометрические параметры резца ф = 45° V = + 10° X = 0° г — i мм. Определить, достаточна ли мощность токарно-винторезного станка мод. 16К20 для работы с указанным режимом резания.  [c.32]

Нормы жесткости токарных станков установлены ГОСТом. Испытанием на мощность (производится после испытаний станка на холостом ходу, в работе и на жесткость) определяют коэф фициент полезного действия станка при наибольшей допустимой для него нагрузке. Во время испытания обрабатывают болванку или производственную деталь, предварительно выбрав сечение стружки и другие режимы резания по паспортньи данным станка. Продолжительность пробной обработки с использованием полной мощности станка не белее 30 мин. Допускается перегрузка электродвигателя на 10—15% против его номинальной мощности.  [c.95]

Анализ работы токарных станков в крупносерийном и массовом производстве показывает, что для этой группы оборудования процент машинного времени по отношению к штучному составляет меньше 50%. Отсюда следует, что имеются большие возможности для значительного повышения производительности труда за счет уменьшения или ликвидации затрат времени на зыполнение ручных вспомогательных работ. Повышение режимов резания позволяет повысить производительность на 10—12%, в то время как полная автоматизация рабочего цикла обеспечивает повышение производительности на 30—50% и создает, кроме того, возможность встраивания таких станков в автоматические линии.  [c.256]

Вертикальный токарный шестишпиндельный станок с автоматическим циклом работы. Работа на скоростных режимах резания. Станок снабжен специальным устройством для автоматической загрузки и выгрузки деталей База — профиль штампованного зуба Вертикальный протяжной двухпозиционный автоматизированный станок с тяговым усилием 20 г и длиной хода суппорта 1200 мм. Станок оборудован механизмом для замедленной подачи в конце хода и устройством для автоматической загрузки и выгрузки деталей База — торец венца Круглошлифовальный автоматизированный станок с угловым расположением шлифовального круга и с укороченной станиной. В станке осуществлен автоматический пнкл шлифования с выхаживанием и правкой шлифовального круга, а также устройство для автоматического контроля в процессе шлифования База — шлицевое отверстие Вертикальный токарный двухшпиндель-  [c.232]

Задача 12. На токарно-винторезном станке мод. 16К20 заготовка обтачивается резцом из твердого сплава с заданными углами ф и у при глубине резания I мм, подаче мм/об и скорости резания V м/мин (табл. 19). Определить 1) с помощью таблиц нормативов мощность, затрачиваемую на резание 2) достаточна ли мощность станка для работы с заданным режимом резания.  [c.34]

В большинстве случаев ПМО применяют для чернового обтачивания и подрезки заготовок на токарных и карусельных станках, хотя в отдельных случаях этот способ применяют при получистовой обработке заготовок. При форсировании режимов резания в связи с плазменным нагревом повышение производительности на предприятиях достигается прежде всего за счет увеличения сечения среза, а затем — скорости, что соответствует основным законам оптимального резания. Необходимо обратить внимание на то, что в ряде случаев применение высокопроизводительного процесса резания с плазменным нагревом заготовок сдерживается отсутствием технологических процессов и оснастки для обработки ступенчатых деталей, галтелей и торцов. Необходимо создать средства механизации и автоматизации вспомогательных работ для ПМО поскольку в некоторых случаях высокий эффект, достигаемый по сновному времени, нивелируется снижением производительности за счет наладки и других вспомогательных операций. При внедрении ПМО на производстве все более настойчиво ставится вопрос о создании станков, специально приспособленных для этого процесса. Станки с встроенными элементами для ПМО повысят эффективность нового процесса и сократят сроки его освоения производством,  [c.200]



Смотреть страницы где упоминается термин Режимы резания для работ на токарных станках : [c.2]    [c.510]    [c.296]    [c.608]    [c.188]   
Справочник технолога-приборостроителя (1962) -- [ c.502 ]



ПОИСК



403 — Режимы резани

403 — Режимы резани резания

Повышение производительности точения и выбор режима резания при работе на токарных станках

Практическое установление наивыгоднейших режимов резания при работе на токарно-карусельном станке

Работа на станках

Станки с токарные

Токарная Режимы резания

Токарные работы

Токарные работы — Режимы



© 2025 Mash-xxl.info Реклама на сайте