Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спутники — Определение

Для определения уровней радиационного воздействия на животных наборы дозиметров были укреплены на собаках. Кроме того, в различных точках кабины были размещены дозиметрические сборки для изучения распределения доз по отсеку спутника и определения защитных свойств элементов его конструкции. Всего на спутнике было установлено около 300 дозиметров и 10 наборов ядерных эмульсий.  [c.279]

Предположим, что в точках 1, Ьз, Ьь, расположенных относительно Земли и Луны так, как указано на чертеже ID — расстояние от Земли до Луны, равное 384 400 км), спутники получили определенные начальные скорости.  [c.102]


Сначала мы, однако, рассмотрим одноимпульсный запуск спутника планеты. Как уже говорилось в 2 гл. 10, если мы желаем вывести спутник на определенную круговую орбиту вокруг планеты (в 2 гл. 10 речь шла о Луне), то нужно спланировать вход в сферу действия планеты таким образом, чтобы перицентр гипер-  [c.329]

Сеть следящих станций обеспечивает слежение за спутниками и определение точного их положения. Число станций зависит от необходимой продолжительности слежения. Станции располагаются в пунктах с точно известными координатами. Данные станций слежения поступают в вычислительный центр, где с помощью ЭВМ производится вычисление эфемерид ИСЗ, которые  [c.160]

Солнечная энергия может быть преобразована непосредственно в электрическую при помощи полупроводниковых элементов. Сейчас подобные системы — необходимая часть энергоснабжения всех космических кораблей. Создание земных установок для прямого преобразования солнечной энергии в электрическую связано с определенными трудностями и экономически выгодно лишь в районах с благоприятным климатом. Рациональным является размещение станций на спутнике, обращающемся вокруг Земли (рис. 0-4) [228] в космосе, где наиболее эффективен процесс преобразования солнечной энергии, доступной почти 24 ч в сутки при удвоенной интенсивности излучения. Солнечные космические энергосистемы могли бы полностью обеспечить энергетические потребности в будущем, удовлетворитель-  [c.8]

Потребность в изучении свойств движений твердых тел зародилась в глубокой древности. Практически любая техническая конструкция включает элементы, которые в нормальных условиях их работы близки по своим свойствам к абсолютно твердому телу. Задачи баллистики пушечных ядер, снарядов, ракет, спутников планет на определенных этапах исследования могут рассматриваться как задачи о движении абсолютно твердого тела. Такие же задачи возникают при создании высокоточных измерительных приборов, механизмов и машин. Из сказанного ясно, что теория движения абсолютно твердого тела весьма обширна и имеет многочисленные практические приложения. Здесь мы ограничимся лишь основами этой теории, включающими общую математическую постановку проблемы и традиционные методы решения типичных задач.  [c.443]

Отсюда получим приращение силовой функции [I на виртуальном перемещении спутника, определенном дифференциалом а  [c.505]

Следовательно, формула (105.53) служит для определения орбитальной скорости спутника небесного тела, который движется по круговой орбите.  [c.156]


Для того чтобы летательный аппарат описывал траекторию вокруг Земли, являясь ее Спутником, необходимо соответствующее значение р при данной начальной скорости Оо и данном начальном расстоянии Гд, т. е. определенное значение угла г))( . Имеются формулы, выражающие условия для значений угла %, при которых для заданной скорости, например эллиптической, траектория не пересекает Землю.  [c.505]

В действительности это не так — существует конечная максимальная скорость распространения взаимодействий, которая равна скорости света в вакууме. Поэтому третий закон Ньютона (а также и второй) имеет определенные пределы применимости. Однако при скоростях тел, значительно меньших скорости света, с которыми имеет дело ньютоновская механика, оба закона выполняются с очень большой точностью. Свидетельством этому являются хотя бы расчеты траекторий планет и искусственных спутников, которые проводятся с астрономической точностью именно с помощью законов Ньютона.  [c.42]

При начальной скорости, большей чем величина v , определяемая выражением (11.23), спутник, как показано в предыдущем параграфе, будет двигаться по эллиптической орбите, для которой точка А является перигелием. Если в точке Л, в которой выключен двигатель ракеты-носителя (н сопротивлением воздуха можно уже пренебречь), скорость ракеты не перпендикулярна к радиусу Земли и имеет достаточно большую величину, то дальнейшее движение будет происходить также по эллиптической орбите, но точка А уже не будет являться перигелием этой орбиты. Таким образом, для вывода спутника на круговую орбиту должны быть точно выдержаны определенные величина и направление скорости ракеты-носителя в момент выключения двигателей. При неточном выполнении этого условия орбита оказывается эллиптической. Поэтому практически орбиты спутников всегда оказываются эллиптическими, но чем точнее осуществлен запуск, тем более близкая к круговой орбита может быть получена.  [c.329]

Об орбите спутника Земли мы говорим только для определенности. При движении космического корабля, например, по орбите планеты дело будет обстоять совершенно так же.  [c.355]

Если спутник вращается на высоте /г над земной поверхностью по окружности, центр которой совпадает с центром Земли, то для определения его скорости нужно учесть изменение значения ускорения свободного падения с высотой. По формуле (26.8) имеем  [c.118]

Орбиты спутника и последней ступени ракеты располагались на больших высотах в весьма разреженных слоях атмосферы. Тем не менее наличие сил сопротивления все же вызвало изменение (эволюцию) орбит. Для первых оборотов спутника период обращения уменьшался за сутки на 1,8 сек. Ракета-носитель тормозилась еще более энергично она вошла в плотные слои атмосферы и разрушилась 1 декабря 1957 г., тогда как спутник просуществовал до 4 января 1958 г., совершив в течение 92 суток около 1400 оборотов вокруг Земли. Экспериментальное определение реальных значений плотности верхних атмосферных слоев составило один из основных научных результатов, полученных в итоге полета первого спутника.  [c.425]

Столь же успешно была решена проблема точности и безопасности приземления корабля-спутника в заданном районе. Для этого нужно было в строго определенный момент уменьшить скорость полета на заданную величину при помощи тормозной двигательной установки, обеспечить вход корабля в более плотные слои атмосферы по достаточно пологой траектории, чтобы избежать больших перегрузок и сильного нагрева корабельного корпуса, осуществить выбрасывание катапультируемого контейнера с живыми организмами и при помощи парашютных систем приземлить с небольшой скоростью кабину и приборный отсек.  [c.436]

В настоящее время концентрация озона, по-видимому, снова стала близкой к норме, хотя наблюдаются многочисленные колебания, имеющие разную продолжительность они затрудняют точное определение этого параметра. Результаты проведения ядерных испытаний показали, что боевые действия с применением ядерного оружия привели бы к чрезвычайно сильному уменьшению массы озона, если бы ядерные взрывы производились в верхних слоях стратосферы с целью уничтожения искусственных спутников Земли либо для того, чтобы нарушить устойчивую дальнюю радиосвязь путем возмущения ионизированных слоев ионосферы.  [c.306]


Но законы Кеплера ничего не говорят относительно соотношений между различными коэффициентами k, k , которые входят в определенные таким образом выражения для притяжения планет Солнцем и спутников соответствующими планетами.  [c.190]

Материальная точка. Механическая система. Под материальной точкой понимается частица материи, достаточно малая для того, чтобы ее положение и движение можно было определить как для объекта, не имеющего размеров. Это условие будет выполнено, если при изучении движения можно пренебречь размерами частицы и ее вращением. Можно или нельзя принять материальный объект за материальную точку, зависит от конкретной задачи. Например, при определении положения спутника Земли в космическом пространстве очень часто целесообразно принимать его за материальную точку если же рассматриваются задачи, связанные с ориентацией антенн, солнечных батарей, оптических приборов, установленных на спутнике, то его нельзя считать материальной точкой, так как в вопросах ориентации нельзя пренебрегать вращением спутника и его следует рассматривать как объект, имеющий конечные, хотя и малые по сравнению с расстоянием до Земли, размеры.  [c.20]

Распределительный вал промывается в моечной машине 65 и транспортируется к автомату 66, на котором контролируется с целью проверки отсутствия трещин. Для проведения контроля распределительный вал обрабатывается ферромагнитным порошком. В моечной машине 67 вал промывается и транспортируется по конвейеру на позицию загрузки автомата 70, на котором осуществляется контроль размеров опорных шеек. Обслуживает автомат 70 промышленный робот 69. Забракованные контрольным автоматом 70 распределительные валы он выгружает на конвейер 68 для определения возможности исправления брака. Годные распределительные валы промышленный робот 69 выгружает на спутник и транспортирует по конвейеру 73 на позицию загрузки контрольного агрегата 71. На нем распределительный вал ориентируют по шпоночному пазу и контролируют кулачки. Работа проводится в полуавтоматическом цикле.  [c.105]

Спутник имел форму шара диаметром 58 см, вес его составлял 83,6 кг. На наружной поверхности спутника были прикреплены антенны радиопередатчиков. Радиоаппаратура вместе с источниками энергопитания помещалась в его герметическом корпусе, изготовленном из алюминиевых сплавов. Внешняя поверхность корпуса была отполирована для лучшего отвода тепла. Перед запуском корпус заполнялся газообразным азотом (принудительная циркуляция газовой среды обеспечивала поддержание равномерной температуры во всех точках его внутреннего объема). Связь спутника с Землей осуществлялась двумя радиопередатчиками, работавшими на волнах длиной 15 и 7,5 лг. Безотказное действие передатчиков позволило осуществить надежное радиослежение за спутником и определение параметров его орбиты. Кроме того, за ним велись отпические наблюдения [1].  [c.425]

На спутниках для определения его отклонения от направления вектора орбитальной йорб угловой скорости вращения служит ги-роорбитант, представляющий собой гироскоп с тремя степенями  [c.136]

Вероятно, целесообразно подчеркивать в современных курсах механики, что закон тяготения Ньютона в его классической формулировке справедлив для гравитирующих материальных точек. Для планеты Земля учет истинной формы Земли и реального распределения масс геоида приводит к более сложному выражению гравитационного потенциала и как следствие к дополнительным силам, вызывающим эволюцию орбит близких спутников Земли. Определение траекторий тени или трассы спутника на поверхности Земли является интересной задачей кинематики относительного движения.  [c.31]

Чтобы получить требуемый по чертежу размер детали, необходимо составить программу обработки с указанием размера Е и ввести ее в ЧПУ станка, например, с помощью перфоленты с управляющей программой. Необходшо настроить торцовую фрезу, установленную в ставдаргаой конусной оправке для автоматической смены режущего инструмента на длину в отделении настройки -режущих инструментов. Следует установить заготовку на спутник с определенным размером Е .  [c.75]

Для измерения дозы радиации внутри спутника использовались интегрирующие дозиметры (термолюминесцентные стекла, люминесцентные дозиметры и фотодозиметры). Определение состава излучения осуществлялось ядерными эмульсиями различной чувствительности.  [c.279]

Для того чтобы летательный аппарат описывал траекторию вокруг Земли, являясь ее спутником, необходимо соотьетствующее значение р при данной начальной скорости Пц 1 данном начальном расстоянии Го, т. е. определенное значение угла фц. Имеются формулы, выражаю-  [c.531]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]


Земли, а не Юпитера. Метод Рёмера был не очень точен, но именно его расчет показал астрономам, что для определения истинного движения планет и -их спутников, производимого на основании измерений наблюдаемого движения планет, необходимо учитывать время распространения светового сигнала.  [c.313]

Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис. 20.1. Пусть в определенный момент времени Земля 3i и Юпитер Юх находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через Rur радиусы орбит Юпитера и Земли и через с — скорость света в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R—г)/с секунд позже, чем он совершается во временной системе отсчета, связанной с Юпитером.  [c.419]

Из этих выражений видно, что при х > 3/ оба условия будут выполнены и, следовательно, функция будет определенно-положительной относительно х ,. Гг,, а с )ункция V — определепно-поло-нштельной относительно х , Х2, жд, х , х , что и доказывает устойчивость стационарного движеиия искусственного спутника Земли относительно величин г, г, 0, 0, ф 1).  [c.61]

Изложенные соображения лежат в основе принципа определения скорости света по методу Рёмера, который в качестве периодического процесса использовал затмения одного из спутников Юпитера. Рёмер проводил наблюдения за спутником Ио, имеющем период обращения 42 ч 27 мин 33 с. При движении Земли по участку орбиты (рис. 30.1) она удаляется от Юпитера и  [c.197]

Понятие о траекториях искусственных спутников Земли. На космический корабль или искусственный спутник помимо поли тяготения Земли действуют поля тяготения других небесных тел (Солнца, Луны и др.). Однако при не слишком большом удалении от Земли решающую роль играет поле тяготения Земли, которое в первом приближении можно считать сферически симметричны центральным полом, чей центр совпадает с центром Зем.ти. Траекторию космическогв корабля можно разбить на два участка активный, во время прохождения которого двигатели работают, и пассивный, описываемый космическим кораблем после выключения двигателя. Определение пассивного участка траектории п поле тяготения Земли сводится к решению задачи Кеплера — Ньютона (см. п. 2. 2). Если пассивный участок траектории тела, запу-ш,енного с Земли в космическое пространство, представляет собой эллиптическую орбиту, то тело является искусственным спутником Земли.  [c.431]

При этом мы отраничимся только простейшим случаем двух тел и упростим еще эту задачу, предполагая, что масса М одного из них гораздо больше массы т второго тела. Тогда мы можем считать первое тело практически неподвижным (или движущимся прямолинейно и равномерно), поскольку ускорение, сообщаемое ему вторым телом мало задача сводится к определению движения второго тела. Реше ние этой задачи позволяет приближенно определить, например, дви жение планет вокруг Солнца или движение спутников вокруг планет Так как движение происходит под действием только силы тяготе ния, действующей со стороны покоящейся массы /И, то по второму закону Ньютона ускорение /, сообщаемое массой М., определяется уравнением  [c.323]

Решение. После того как ракета-носитель вывела спутник массой т на заданную орбиту и сообщила ему скорость V, касательную к орбите, спутник продолжает движение под действием одной лшдь силы притяжения Земли. Для определения скорости V спутника применим принцип Даламбера, т. е. приложим к спутнику центробежную силу инерции и составим уравнение равновесия, спроецировав силы на ось, проходящую через спутник и центр Земли  [c.138]

Уделяя серьезное внимание развитию ракетных и самолетных двигательных систем, Цандер разработал конструкции и провел испытания жидкостных реактивных двигателей ОР-2 и 10 с применением двигателя 10 25 ноября 1933 г. был осуществлен запуск второй советской ракеты ГИРД-Х (см. стр. 419). Столь же большое внимание уделялось Цандером теоретическим разработкам. Так, в 1924—1927 гг. он выполнил два исследования — Полеты на другие планеты (теория межпланетных путешествий) и Расчет полета межпланетного корабля в атмосфере Земли (спуск) . Опубликованные посмертно в 1961 г., они наряду с рассмотрением других проблем содержат определение величины и направления добавочной скорости, которую нужно сообщить межпланетному кораблю, движущемуся вокруг Земли по орбите искусственного спутника, чтобы достигнуть планеты Марс. В этих же работах впервые была поставлена и проанализирована задача корректирования траектории центра масс космического корабля при приближении к планете, являющейся целью полета, и даны таблицы (расписания) полетов с Земли на Марс, не утратившие своего значения до нашего времени [8].  [c.415]

В корпусе корабля-спутника помещалась герметическат кабина весом 2500 кг, сконструированная по типу кабин для пилотов-космонавтов, и находилась аппаратура системы ориентации, обеспечивающей определенное положение корабля при орбитальном полете, и системы терморегулирования и кондиционирования воздуха внутри кабины. Кроме того, корабль был оборудован радиотехнической и радиоэлектронной аппаратурой, осуществлявшей измерения его орбиты, управление бортовыми системами и связь с наземными станциями. Уменьшение скорости полета, необходимое для перехода корабля на траекторию снижения, достигалось с помощью приданной ему специальной тормозной двигательной установки.  [c.435]

Столь же значительным для исследования космического пространства и будущих космических полетов явился осуществленный 7 апреля 1968 г. запуск советской автоматической станции Луна-14 — искусственного спутника Луны, выведенного на се.леноцентрическую орбиту с параметрами 870 км в апоселении и 160 км в периселении. Совершая облеты Луны с периодами обращения 2 час 40 мин, она передает информацию, необходимую для уточнения гравитационного поля и формы Луны, определения соотношения масс Луны и Земли, разработки точной теории дви-  [c.451]


Смотреть страницы где упоминается термин Спутники — Определение : [c.178]    [c.230]    [c.247]    [c.211]    [c.255]    [c.58]    [c.74]    [c.76]    [c.418]    [c.196]    [c.242]    [c.427]    [c.433]    [c.196]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.0 ]



ПОИСК



Определение возмущенных координат спутника

Определение и улучшение элементов орбит искусственных спутников Земли

Определение орбиты по положению и скорости спутника

Определение орбиты по трем положениям спутника

Определение положения спутника по известным элементам его орбиты

Определение толщины изоляции трубопроводов, обогреваемых паровыми спутниками

Определение элементов орбиты спутника по его положению и скорости в один момент времени

Системы координат, служащие для определения положения спутника

Спутник

Спутники — Определение для гибкого транспорта

Спутники — Определение для поршней



© 2025 Mash-xxl.info Реклама на сайте