Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КАДМИЙ Свойства

СПЛАВЫ СЕРЕБРО — КАДМИЙ Свойства и применение  [c.271]

Кадмий — Свойства 1.181 Кадмирование — Добавки 1.182  [c.237]

Нагрузки допускаемые 215 Кадмий — Свойства 211 Калибры 396—403  [c.590]

Кадмий, свойства 386 Калиевая селитра 129 вязкость растворов 172 давление паров над растворами 164, 172  [c.436]

Легкоплавкие металлы — цинк, кадмий, ртуть, олово, свинец, висмут, таллий, сурьма и элементы с ослабленными металлическими свойствами—галлий, германий.  [c.17]


Хорошо свариваются сплавы алюминия, кадмия, свинца, меди, никеля, золота, серебра, цинка и тому подобные металлы и сплавы. К преимуществом этого способа относятся малый расход энергии, незначительное изменение свойства металла, высокая производительность, возможность автоматизации.  [c.221]

Технические приемы, применяемые для образования центров кристаллизации и избежания переохлаждения, зависят от свойств конкретного металла, его склонности к переохлаждению. Свинец, кадмий, цинк, индий, серебро и золото имеют небольшое естественное переохлаждение, обычно меньшее I К. Для этих металлов можно получить вполне удовлетворительное затвердевание при стимулировании образования центров кристаллизации введением в образец переохлаждения с помощью следующей процедуры термометр на 30 с вынимается из гнезда, погруженного в слиток, охлаждается вне печи, а затем погружается обратно, как это показано на рис. 4.27.  [c.176]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]


Бронзы — сплавы меди, с оловом, кадмием, бериллием, алюминием, кремнием и другими металлами и металлоидами. В большинстве случаев бронзы имеют высокие литейные качества, а также антикоррозионные и антифрикционные свойства. Диаграмма состояния системы сплавов Си—Be приведена на рис. 175. Растворимость бериллия при температуре 20° С мала (0,2%), но увеличивается до 1,4% при нагреве до 570° С. Ограниченная растворимость в твердом состоянии позволяет производить термическую обработку бериллиевых бронз (закалку и старение). Упрочняющей является v-фаза (СиВе). В приборостроении широкое распространение нашла бериллиевая бронза,  [c.267]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Примеси свинца, висмута, сурьмы, мышьяка, олова, кадмия и железа отрицательно влияют на технологические свойства цинка [1].  [c.48]

Влияние температуры на механические свойства кадмия чистотой 99,98 % показано ниже [1]  [c.48]

Кадмий влияет на свойства баббита аналогично олову — повышает прочность и твердость.  [c.332]

В табл. 25 и 26 приведены данные о влиянии различного содержания кадмия в баббите БН на его механические и антифрикционные свойства. Наиболее хорошими антифрикционными и механическими свойствами обладают баббиты  [c.332]

Влияние кадмия на свойства баббита БН  [c.332]

Влияние кадмия на антифрикционные свойства баббита БН  [c.333]

Физические и механические свойства кадмия следующие.  [c.387]

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости (см. рис. 7-12) значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (Ор —до 1350 МПа). Сплав меди о цинком — латунь — обладает достаточно высоким относительным удлинением  [c.200]

По химическим свойствам кадмий подобен цинку, поэтому для кадмия и его сплавов можно применять те же реактивы, что и для травления цинка. Рекомендуемые дополнительно  [c.228]

Очевидно, ни один из металлов в чистом виде не годится в качестве материала для электрических контактов. Разработанные для контактов сплавы, такие, как серебро — медь, серебро — кадмий и др., имеют по сравнению с металлами повышенную прочность и твердость, поверхность их не тускнеет, но их электро- и теплопроводность значительно ниже. Для получения требуемых характеристик контактов в сильноточных цепях разрабатываются композиционные материалы, которые сочетают высокую электро- и теплопроводность с высокими температурами плавления и кипения, или обладают ни.зкой смачиваемостью и низкими фрикционными свойствами, и т д. Свойства типичных композиционных материа-  [c.418]

А, а у алюминия 4,041 А. Современные методы позволяют измерять параметры решетки с точностью до четвертого или даже пятого знака. Многие свойства металлов связаны с координационным числом. В простой кубической решетке координационное число равно 6. В кубической гранецентрированной решетке атомы располагаются по вершинам элементарной ячейки и в центрах ее граней. Каждый атом в этой решетке окружен 12 ближайшими соседями. Координационное число в этой решетке равно 12. Почти все металлы — цинк, кадмий, ртуть и далее левее в периодической таблице, имеют простые решетки с координационными числами 8 и 12. Для неметаллов, наоборот, характерно малое значение координационного числа.  [c.31]


Кадмий, ПС влияя на прочность и отожженном и закаленном состояниях, увеличивает ее в состаренном. Примечательно, что кадмий — инертный легирующий элемент в классической системе А1 — Си—Mg — не влияет на свойства сплавов этой системы. Это показывает, что не всегда влияние леги-.рующего элемента в одних сплавах или в одних условиях также проявляется р. других сплавах или других условиях.  [c.578]

Технически чистые металлы характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа называют черными, к ним относят стали и чугуны на основе алюминия, магния, титана и бериллия, имеющие малую плотность — легкими цветными на основе меди, свипца, олова и др. — тяжелыми цветными на основе цинка, кадмия, олова, свинца, висмута и других металлов — легкоплавкими цветными на основе молибдена, ниобия, циркония, воль4)рама, ванадия и других металлов — тугоплавкими цветными.  [c.5]

В шкалу ПТШ-76 введены реперные точки по температурам переходов пяти металлов в нулевом магнитном поле из сверхпроводящего в нормальное состояние. Эти металлы входят в прибор, разработанный в НБЭ под названием Стандартный справочный материал ЗКМ 767 . Некоторый недостаток ПТШ-76 состоит в том, что один из рекомендованных способов ее воспроизведения тесно связан с конкретным прибором, который изготавливается только в НБЭ. Можно надеяться, что в будущем удастся изготавливать наборы из пяти металлов с достаточно воспроизводимыми свойствами, с тем чтобы и температуры переходов имели одно и то же значение независимо от происхождения образца. Значения температур, приписанные сверхпроводящим переходам свинца, индия и алюминия, соответствуют среднему значению, полученному по шкалам различных лабораторий после согласования шкал с ТхАс- Неопределенность в этих значениях оценена величиной 0,5 мК- Значение температуры сверхпроводящего перехода цинка получено по магнитному термометру НФЛ, а для кадмия — по магнитному термометру НФЛ и шумовому термометру НБЭ. Детальное описание ПТШ-76, историю ее создания и построения можно найти в работе Дюрье и др. [22].  [c.68]

Антифрикционные и механические свойства баббитов повышаются при введении в их состав никеля, кадмия и мышьяка. Никель упрочняет а-раствор. Кадмий с мышьяком (сплав БН) образуют соединения As d, которые служат зародышами для формирования соединения SnSb (р-фазы).  [c.357]

Не удивительно, что высокое содержание серной кислоты в промышленной и городской атмосфере существенно снижает срок службы металлических конструкций (см. табл. 8.2 и 8.3). Это особенно выражено в отношении металлов, не устойчивых к серной кислоте, таких как цинк, кадмий, никель и железо, и в меньшей степени касается металлов, устойчивых к разбавленной H2SO4, например свинца, алюминия и нержавеющей стали. Медь, на поверхности которой образуется защитная пленка из основного сульфата меди, устойчивее никеля или сплава Ni—Си (70 % Ni), на которых образуются пленки с менее выраженными защитными свойствами.  [c.176]

Детальное исследование свойств медленных нейтронов было проведено в серии опытов, схема которых изображена на рис. 110 (И — источник, окруженный замедлителем 3 d —лист кадмия толщиной 1 MM-, П — поглотитель, толщину которого можно было изменять, п Д — детектор). Измерение активности детектора А проводилось в четырех вариантах опыта (при разных толщинах иоглотителя)  [c.302]

Исследование влияния легирующих добавок на свойства цинкового покрытая, полученного из расплава, показало, что d и Sn не влияют, а Си увеличивает толщину покрытия, при этом в присутствии Си и d увеличивается устойчивость цинкового покрытия в атмосферных условиях. Алюминий, введенный в расплав до 0,25 %, вызьтает резкое снижение толщины покрытия и коррозионной стойкости, но увеличивает пластичность биметалла. При одновременном содержании меди и алюминия в цинковом покрытии медь при содержании более 0,02 % подавляет действие алюминия, и стойкость оцинкованной стали в атмосферных условиях повышается. Однако в присутствии алюминия в атмосфере с высокой влажностью возникают темные пятна, ухудшая внешний вид изделия. Добавка олова, кадмия, сурьмы, меди, введенных в расплав вместе с алюминием и свинцом, предотвращает возникновение тем-  [c.54]

Обработку металлов и покрытий можно проводить также в хромат-но-фосфатных растворах, которые используются в основном для обработки металлов и покрытий на основе алюминия и его сплавов, цинка, кадмия и др., с целью получения поверхностных слоев, отличающихся высокими коррозионно-защитными свойствами и повышенной стойкостью к истиранию. Защитная способность пленок в коррозионноактивных средах связана с наличием шестивапентных ионов хрома, обладающих сильным пассивирующим действием, а также соединений трехвалентного хрома, образующего труднорастворимые соединения, а повышение стойкости пленок в условиях истирания - с наличием в растворе нитрата свинца [9].  [c.98]

Лучшие магнитные свойства имеют смешанные ферриты, представляющие собой твердые растворы ферромагнитных и неферромагнитных ферритов. Примерами смешанных ферритов являются твердые растворы феррита марганца или никеля с неферромагнитными ферритами цинка или кадмия. Такие твердые растворы можно представить формулой М].М Ре20 , гдеМ —двухвалентный ИОН металла, образующего ферромагнитный феррит, а М — неферромагнитный феррит, х — указывает долю М в сумме ионов В качестве неферромагнитного  [c.181]

Дефектами контакторов из сплава Ag— dO при критических режимах нагрузки являются глубокие межкристал-лические разрывы, возникающие из-за термических напряжений. Такие дефекты особенно характерны для крупнокристаллической структуры. В данное время разработан новый метод получения мелкозернистого материдла на основе серебра с дисперсными равномерно распределенными включениями dO. Мелкодисперсную смесь Ag и dO получают совместным осаждением гидроокисей кадмия и серебра из раствора нитратов этих элементов. Выделившиеся порошки превращаются при нагреве в металлическое серебро и dO. В противоположность обычному порошковому методу в данном случае прессуют не готовые детали, а блоки. Блоки спекают по особому тем-пературно-временному режиму и затем горячей и холодной деформациями с общим обжатием более 95% изготовляют необходимые полуфабрикаты. Таким методом получают предельно плотную матрицу с мелкодисперсными, равномерно распределенными включениями dO. Для предотвращения образования крупнозернистой структуры в основе должно содержаться 10—15 вес. % dO. Даже после критической деформации и многочасового рекри-сталлизационного отжига при 800° С средний размер зерна основы составляет менее 10 мкм, что соответствует среднему расстоянию между частицами dO. Изделия, полученные таким методом из сплава Ag— dO, проявляют при особо критических-условиях работы значительно лучшие свойства (низкую свариваемость при высоких токах включения и равномерное обгорание).  [c.249]


В качестве легкоплавких припоев применяют в основном сплавы на основе олова и свинца различного состава, от которого зависят и свойства припоев. Для получения специальных свойств припои легируют сурьмой, серебром, висмутом, кадмием. Серебро и сурьма повышают, а висмут и кадмий понижают температуру планления сплавов. Олово и свинец дают диаграмму эвтектического типа. Чем меньше интервал кристаллизации, тем выше жидко-текучесть сплава и меньшая выдержка требуется для затвердевания припоя в соединении, что нужно учитывать при выборе припоя в каждом конкретном случае. От интервала кристаллизации зависит также герметичность паяных соединений. Широкий интервал кристаллизации способствует получению пористых негерметичных соединений. Механическая прочность припоев сохраняется в определенном интервале температур. С повышением и понижением температуры механические свойства ухудшаются. При низких температурах (от -—30 до —60° С) происходит резкое снижение ударной вязкости, особенно при большом содержании олова. Прочность припоев при повышении температуры также снижается. Для припоев  [c.254]

Распространено мнение, что хладноломкость является природным свойством о. ц. к. металлов (например, Fe, Сг, Мо, W, вследствие резкого увеличения их предела текучести при понижении температуры [1]) в отличие от меди, никеля, алюминия и других металлов, имеющих г. ц. к. решетку. Действительно, металлы с г. ц. к. решеткой нехлад -поломки. Однако тантал и щелочные металлы с о. ц. к. решеткой также нехладноломки, чистейшее железо пластично до глубокого охлаждения. С повышением чистоты металлов подгруппы хрома порог хрупкости смещается к низким температурам. Хладноломкость цинка и кадмия обусловлена примесями при чистоте 99,999 % хладноломкость отсутствует. Чистые металлы VA подгруппы также нехладноломки. Хладноломкость у них наблюдается лишь при недостаточно высокой чистоте. Растворимость примесей у металлов VIA подгруппы чрезвычайно мала, и достаточно полная очистка их представляет трудную задачу. Кроме того, при хранении в комнатных условиях они могут поглощать газы из атмосферного воздуха и охрупчиваться.  [c.23]

Особую группу составляют специальные бронзы, содержащие бериллий, кадмии, хром и другие элементы, обладающие высокой тепло- и электропроводностью, жаропрочностью п сочетании с высокими механическими и антикоррозионными свойствами. Наибольший интерес представляют бериллиевые бронзы (Бр. Б2, Бр. Б2,5), имс юшие исключительно высокие механические свойства. Эти бронзы способны облагораживаться.  [c.230]

Влияние примесей на свойства оловянноцинковых припоев. Свинец не влияет заметным образом на свойства оловякноцинковых припоев, но улучшает жидкотекучесть. Висмут понижает температуру плавления. Кадмий ухудшает паяльные свойства коррозионные свойства от добавки кадмия ухудшаются настолько, что иногда шов распадается при выдерживании его в 3%-ном растворе хлористого натрия. Серебро в количестве 1—3% влияет благоприятно на свойства оловянноцинковых припоев, повышает их коррозионную устойчивость. Добавка фосфора к оловянноцинковым припоям способствует разрушению окисной пленки при пайке алюминия и улучшает жидкотекучесть. Добавка алюминия в количестве 1—6% благоприятно влияет на прочность спайки.  [c.352]

Кадмий, железо и медь попытают кеханические свойства цинка.  [c.385]

Применение индия определила его высокая стойкость против коррозии в среде минеральных масел и продуктов их окисления, низкий коэффициент трения и устойчивость к атмосферным воздействиям. Индиевые покрытия используются для повышения отражательной способности рефлекторов, в качестве антифрикционных покрытий и для зашиты от коррозии в специальных средах. К сожалению, индий обладает малой твердостью и узкой областью рабочих температур, в связи с этим широкое распространение получили сплавы индия, улучшающие эти свойства. Так, электролитический сплав индия со свинцом хорошо зарекомендовал себя в условиях трения без смазки. Сплав индия с таллием характеризуется сверхпроводимостью при низких температурах, сплавы нидий-кадмий, индий-цинк во много раз лучше сопротивляются коррозии, чем чистые кадмиевые или цинковые покрытия. Хорошими антифрикционными свойствами обладают и другие индиевые сплавы индий — никель, индий — кобальт, индий — серебро. Ценными свойствами обладает сплав индий — палладий. Индиевые покрытия можно получить из различных электролитов цианистых, сернокислых, сульфаматных, тартратных, борфтористоводородных. Составы наиболее употребляемых электролитов приведены в табл. 33.  [c.79]

Полупроводниковыми свойствами обладает ряд окислов, в частности, окислы переходных металлов. К полупроводникам относятся окислы меди, цинка, кадмия, титана, молибдена, вольфрама, ypajia, марганца, никеля и др. Среди оксидных полупроводников рассмотрим закись меди ujO и окись марганца МП3О4.  [c.187]

От свойств основного металла зависит выбор как покрытия, так и метода его нанесения. Цинк и кадмий — высокоэффективные покрытия для стали, так как будучи анодами по отношению к стали они обеспечивают протекторную защиту основного слоя в неснлошностях покрытий. Покрытия, являющиеся катодами по отношению к металлу, на который они нанесены, не должны иметь дефектов во избежание коррозии основного металла. Толщина покрытия должна быть достаточной, чтобы предотвратить проникающую коррозию в течение требуемого срока эксплуатации изделия. Катодные покрытия могут сохраняться, если корродирующие участки основного металла будут быстро пасснви-  [c.125]


Смотреть страницы где упоминается термин КАДМИЙ Свойства : [c.203]    [c.60]    [c.408]    [c.329]    [c.197]    [c.201]    [c.296]    [c.108]    [c.217]    [c.264]    [c.130]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.393 , c.441 , c.442 , c.444 , c.462 ]

Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.145 , c.146 ]

Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.154 ]

Гальванотехника справочник (1987) -- [ c.156 ]



ПОИСК



90 — Свойства оловянные с цинком, серебром, сурьмой, медью, кадмием — Марки 91 Химический состав

Кадмий

Кадмий 273, 274 — Химический состав высокой чистоты 274 — Физические свойства

Кадмий Механические свойства

Кадмий — Растворимость в химических средах 70 — Свойства

Кадмий, акустич. свойства

Применение висмутовые — Диаграмма состояния сплавов систем висмут—кадмий, висмут—олово 98 — Применение 98 — Свойства 98 — Химический состав

Применение индиевые — Диаграмма состояния сплавов системы индий—кадмий 93 Применение 93 — Свойства 93, 94 — Химический состав

Применение кадмиевые — Диаграммы состояния сплавов систем кадмий—цинк, кадмийсеребро 94 — Применение 94 — Свойства 97, 98 — Химический состав

Свойства и применение кадмия

Свойства кадмия и кадмиевых покрытий

Свойства цинка и кадмия

Физические свойства алюминия высокой кадмия высокой чистоты



© 2025 Mash-xxl.info Реклама на сайте