Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости Теплообмен в турбулентном пограничном слое

Теплообмен в турбулентном пограничном слое. Из аналогии Рейнольдса между теплообменом и трением в турбулентном пограничном слое несжимаемой жидкости получается зависимость  [c.689]

Поскольку при современном уровне наших знаний структуры турбулентного течения жидкостей невозможно теоретическое решение задач о трении и теплообмене в турбулентном пограничном слое на пористой поверхности, решающее значение имеет накопление опытных данных о влиянии скорости притока охладителя на касательное напряжение у стенки, профили скорости и толщину ламинарного подслоя при различных газодинамических условиях течения. Выполненные до настоящего времени экспериментальные исследования не дают необходимых данных для широких теоретических обобщений. Основной задачей многих экспериментов являлось установление зависимости между температурой поверхности пористого материала и массовым расходом охладителя при различных скоростях и температурах потока нагретого газа, а также определение коэффициентов трения и теплообмена на стенке в зависимости от расхода охладителя при различных условиях течения.  [c.516]


На рис. 11-34 показана зависимость коэффициента трения от параметра вдува в турбулентном пограничном слое сжимаемой жидкости по данным [Л. 123] при вдуве азота в воздух при Моо = 2 и 3,2, а также по данным (Л. 186, 314], пересчитанным при определяющей темпера-гуре по (11-114). Пересчет данных по теплообмену из 25 387  [c.387]

ТРЕНИЕ и ТЕПЛООБМЕН ПРИ ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ В СЖИМАЕМОЙ ЖИДКОСТИ  [c.465]

Физическая и математическая модели процесса. Решение поставленной задачи целесообразно выполнить, используя модель пограничного слоя, которую-можно рассматривать как частный случай более общей модели течения и теплообмена вязкой сплошной среды. Система уравнений, описывающая стационарное-двумерное течение и теплообмен несжимаемой жидкости в плоском турбулентном пограничном слое, может быть представлена в следующем виде уравнение энергии  [c.66]

Эта система уравнений описывает движение и теплообмен в турбулентном ядре потока жидкости в плоской трубе и в плоском пограничном слое при достаточно умеренных скоростях течения.  [c.38]

В гл. 7 были рассмотрены механизм турбулентного переноса импульса и развитие турбулентного пограничного слоя несжимаемой жидкости на продольно обтекаемой гладкой поверхности, а в гл. 9 — теплообмен при турбулентном течении в длинных каналах постоянного поперечного сечения. Для расчета теплоотдачи использовалась аналогия между переносом тепла и импульса в турбулентном потоке. В настоящей главе методы аналогии применяются для расчета теплообмена между гладкой поверхностью тела и турбулентным пограничным слоем. Эта задача отличается от внутренней только тем, что при течении в каналах пограничные слои на стенках развиваются независимо лишь до определенного сечения, в котором они смыкаются. Вниз ио потоку от этого сечения течение устанавливается, т. е. безразмер-ные профили скорости и температуры в сечении не изменяются ио длине канала. В этой главе нас интересует область, в которой пограничный слой на поверхности тела развивается. Предполагается, что пограничный слой достаточно тонкий и не взаимодействует с другими пограничными слоями.  [c.280]

При этом в опубликованных работах большей частью исследуется теплообмен при ламинарном пограничном слое на лобовой части тел с притупленным носом. При турбулентном пограничном слое получены лишь первые результаты. При этом необходимо обратить внимание на следующее важное обстоятельство. При сверхзвуковом потоке уравнение вязкой жидкости (Путем разложения по малым приращениям плотности можно разбить на две части первую, отображающую систему нестационарных уравнений гидродинамики, и вторую — систему уравнений акустики. Это соответствует то.му положению, что переход видимого движения в тепло в общем случае происходит двояким путем за счет трения, отображаемого в уравнениях движения тензором вязких напряжений, и за счет акустической сжимаемости.  [c.15]


В [Л. 18] предложен приближенный метод расчета коэффициентов трения и теплообмена при плоскопараллельном турбулентном пограничном слое в сжимаемой жидкости с продольными градиентами скорости и температуры. Метод основывается на решении интегральных уравнений движения и тепловой энергии, допущении о возможности представления коэффициентов трения и теплообмена степенными функциями продольной координаты, а также на использовании опытных данных о влиянии на трение и теплообмен различных факторов, усложняющих перенос количества движения и тепла в пограничном слое. К числу таких факторов при обтекании газом тел с непроницаемой поверхностью относятся продольный градиент давления, сжимаемость газа и неизотермические условия движения.  [c.492]

Турбулентное движение - это сложное движение материи - сплошной среды - жидкости, газа и плазмы. Турбулентное движение возникает или при движении потока вязкой феды возле твердой поверхности, или при относительном движении двух потоков вязкой среды. В зависимости от конкретного движения внешние признаки, характерные только для турбулентного движения, могут быть различными. В сравнении с ламинарным турбулентное движение в трубах и каналах характеризуется резким увеличением сопротивления. При струйном течении ст]эуя, вытекающая из отверстия, имеет меньшую скорость, чем ламинарная нормальное сечение струи больше и струя быстрее размывается. При внешнем турбулентном движении толщина пограничного слоя и сопротивление движению больше. Теплообмен между турбулентным потоком и твердой поверхностью происходит более интенсивно, чем при ламинарном движении.  [c.11]

Изучение процессов движения жидкости и теплоотдачи в трубах представляет собой большой практический интерес, так как трубы являются элементами различных теплообменных аппаратов. Наибольшие трудности возникают при исследовании движения и теплоотдачи на начальном участке трубы. Участок в трубе, на протяжении которого поле основной переменной величины (скорости или температуры) зависит от условий на входе и на котором происходит нарастание пограничного слоя до заполнения поперечного сечения трубы, называют начальным участком. В зависимости от природы процесса переноса различают гидродинамический начальный участок и тепловой начальный участок. На начальном участке может быть ламинарное и турбулентное движение жидкости во входном сечении трубы (х = 0) профиль скорости плоский (имеет прямоугольную форму).  [c.293]

В технике большое значение имеет теплообмен при больших числах Re. В связи с этим в гидродинамике и теплообмене вязкой жидкости важное место занимает теория пограничного слоя. В настоящее время методы пограничного слоя хорошо разработаны для несжимаемой жидкости и сжимаемого газа. Получены решения ряда задач о теплообмене и гидравлическом сопротивлении при ламинарном и турбулентном течении жидкости в трубах и соплах, задач о распределении скорости и температуры в неизотермических струях и ряда других задач. Наибольшее (распространение методы пограничного слоя получили при решении задач теплообмена и сопротивления при внешнем (безотрывном) обтекании тел.  [c.11]

Значительное количество работ посвящено важнейшей проблеме изучения тепло- и массообмена в пограничном слое. В частности, путем совместного решения уравнений переноса тепла в пограничном слое жидкости и обтекаемом теле учтено взаимное тепловое влияние тела и жидкости друг на друга, что важно при высокоинтенсивном теплообмене. Однако во всех этих работах, как правило, рассматривается ламинарный пограничный слой, а изучению явлений переноса в турбулентных потоках уделено из-за математических трудностей мало места.  [c.3]


ТЕПЛООБМЕН В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ НЕСЖИМАЕМОИ ЖИДКОСТИ  [c.436]

Теплоотдача от плоской пластины при обтекании пластины турбулентным потоком жидкости. Рассмотрим теплообмен между пластиной и жидкостью при турбулентном движении последней. Как и ранее, ограничимся приближением пограничного слоя, которое может быть найдено из анализа уравнений двилшния жидкости и переноса теплоты в турбулентном пограничном слое.  [c.444]

Переходя к изучению турбулентного пограничного слоя в сжимаемой жидкости, отметим следующее современные знания о механизме турбулентного переноса количества движения и теплоты недостаточны для того, чтобы аналитически определить трение (т. е. коэффициент трения j) и теплообмен (т. е. коэфф1щиент теплоотдачи ос). Поэтому во всех созданных методиках расчета в той или иной форме используются экспериментальные данные. Ранее, в гл. 7, уже отмечалось, что для математичес у0Г0 исследования турбулентного движения целесообразно разложить его на осредненное и пульсационное движения. В турбулентном течении сжимаемой жидкости происходят пульсации скорости, давления, плотности и температуры.  [c.217]

При ламинарном -пограничном слое на пластине с нео богреваемым начальным участком задача решена с помощью интегрального уравнения энергии. Это же уравнение можно использовать и для решения рассматриваемой задачи. Однако применять его следует весьма осмотрительно, поскольку принимаемое простое уравнение для профиля температуры может быть совершенно правильным в большей части турбулентного пограничного слоя, но дает абсолютно неверные результаты в подслое и, в частности, на стенке. С этой же трудностью мы уже сталкивались в гл. 7 при решении интегрального уравнения импульсов турбулентного пограничного слоя. Там при вычислении интеграла мы использовали для профиля скорости закон одной седьмой степени. Однако при этом профиле скорости градиент скорости на стенке равен бесконечности следовательно, этот профиль не может быть использован в подслое, и для вычисления касательного напряжения необходим другой метод. Рассмотрим теперь один из нескольких методов расчета, предложенный в [Л. 2]. Он справедлив для жидкостей с Рг=1. Однако влияние необогреваемого начального участка на теплообмен, по-видимому, не сильно зависит от числа Прандтля, и результаты расчета хорошо согласуются с опытными данными для воздуха.  [c.288]

Известно, что по характеру движения жидкости различают ламинарное и турбулентное движение. Теплообмен в турбулентном потоке происходит более интенсивно, чем в ламинарном, благодаря хаотическому движению частиц (макрообъемов) жидкости. Турбулентный режим может иметь место и в области пограничного слоя.  [c.180]

Уравнения (1-73) — (1-77) образуют систему основных уравнений плоскопараллельиого турбулентного пограничного слоя сжимаемой жидкости. Влияние пульсаций скорости сказывается в уравнениях количества движения, неразрывности и энергии в том, что там появляются соответственно добавочное рейнольдсово напряжение, кажущийся источник и добавочная передача энергии турбулентной теплопроводностью. Чтобы замкнуть систему, необходимо к этим уравнениям присоединить уравнения, связывающие пульсационные составляющие характеристик с их средними значениями. Сложность структуры турбулентного потока и отсутствие достаточного количества надежных опытных данных не позволяют решить эту задачу аналитически. Поэтому для получения необходимых данных по трению, теплообмену и массообмену решающее значение имеют полу-эмпирические методы, основанные на различных гипотезах и эмпирических соотношениях. Некоторые из этих методов рассматриваются в гл. 10 и 11.  [c.26]

Краткое содержание. Исследуется теплообмен между стенкой и турбулентным пограничным слоем при условии безградиентного потенциального течения сжимаемой жидкости и произвольном распределении температуры вдоль стенки. При исследовании использован метод, ко-торый можно рассматривать как дальнейшее развитие метода Лайт-хилла [1], примененного им для решения аналогичной задачи в условиях ламинарного потока. Кроме того, принимается соответствующая гипотеза относительно характера поперечного распределения скоростей в пограничном слое сверхзвукового потока (в основу гипотезы положены достаточно обоснованные экспериментальные результаты). Приводится также соответствующее распределение температур в пограничном слое.  [c.311]

Методы расчета, предложенные в [Л. 155, 184, 222], основываются на преобразованном уравнении количества движения и полуэмнирическом методе расчета турбулентного пограничного слоя в несжимаемой жидкости, разработанном Е. К. Маскелем. В Л. 222] рассмотрено два случая обтекание газом теплоизолированной стенки и стенки с постоянной температурой. Расчетный метод [Л. 184] охватывает наиболее общий случай произвольный градиент давления во внешнем потоке и теплообмен на обтекаемой поверхности.  [c.469]

В последние годы интерес исследователей привлекают физические методы воздействия на пограничный слой в каналах, имеющие целью устранение или затягивание отрыва, уменьшение гидравлического сопротивления на режимах безотрывного обтекания путем ламинаризации течения, интенсификацию турбулентного перемешивания и теплообмена. Упомянем здесь, в частности, исследования предотвращения потери устойчивости потока с помощью упругих покрытий стенок канала (А, И. Короткий, 1965), уменьшения гидравлического сопротивления в канале путем введения в поток жидкости полимерных добавок, влияния ультразвука (А. П. Третьяков и Чэн Хуа-дин, 1960) или вибраций (В. Н, Евреинов, 1962 С. И. Сергеев и Г. А. Хотина, 1965) на гидравлическое сопротивление и теплообмен.  [c.802]


При турбулентном режиме движения жидкости возникает интенсивное перемешивание, увеличивающее конвективный теплообмен. Теплота передается теплопроводностью только в тонком ламинарном подслое, а затем в ядро потока за счет турбулентной дк ффузии. При увеличении средней скорости движения интенсивность турбулентного перемешивания растет, что ведет к уменьшению толщины пограничного слоя, уменьшению термического сог ротивления и интенсификации теплообмена.  [c.497]


Смотреть страницы где упоминается термин Жидкости Теплообмен в турбулентном пограничном слое : [c.355]    [c.298]    [c.156]    [c.182]    [c.471]    [c.372]    [c.220]    [c.315]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.689 ]



ПОИСК



Глава двенадцатая. Приближенные методы расчета трения и теплообмена в турбулентном пограничном слое несжимаемой жидкости

Глава тринадцатая. Трение и теплообмен при турбулентном пограничном слое в сжимаемой жидкости

Жидкости Пограничный слой

Жидкости Пограничный слой турбулентный

М Боришанский, Е. Д. Федорович, Расчет теплообмена в турбулентном пограничном слое несжимаемой жидкости в широком диапазоне чисел Прандтля

Пограничный слой турбулентный

Пограничный турбулентный

Слой турбулентный

Теплообмен в слое

Теплообмен в турбулентном пограничном слое несжимаемой жидкости

Турбулентность (см. Пограничный

Турбулентность теплообмен

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте