Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы — Характеристики пластичные

Для подавляющего большинства конструкций наиболее важным требованием является прочность материала, определяемая экспериментально. Помимо характеристик прочности, при механических испытаниях материалов определяют характеристики пластичности, твердости, упругие постоянные и р.  [c.216]

Как известно, характеристики пластичности (относительное удлинение 5, сужение и др.) в расчетные формулы для определения толщины стенок аппарата не входят, хотя на их значение налагаются определенные ограничения. Дяя материалов трубных сталей ограничивается величина К .  [c.367]


Диаграммы растяжения некоторых пластичных материалов (например, дюралюминия, среднеуглеродистой стали) не имеют площадки текучести. Для этих материалов основной характеристикой прочности служит так называемый условный предел текучести — напряжение, при котором относительное остаточное удлинение равно 0,2% (рис. 2.24). Эту величину обозначают Оо,2-  [c.200]

Что является характеристикой прочности н характеристикой пластичности материалов  [c.283]

Для пластичных материалов механические характеристики при растяжении и при сжатии практически совпадают, поэтому расчет па прочность ведут по максимальному напряжению без учета его знака, независимо от того, где находится опасное сечение, в зоне растяжения или в зоне сжатия.  [c.297]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]

Сопоставляя характеристики пластичного и хрупкого материалов и результаты испытаний, на основании которых они построены, можно сформулировать основные признаки деления материалов на пластичные и хрупкие  [c.45]

Материалы, обладающие характеристикой (рис. Х1У.З,а), в которой 1 = О, называются идеально-пластичными. В этой характеристике при е < а = б при е > а =  [c.393]

Для большинства материалов механические характеристики (пределы пропорциональности, упругости, текучести, прочности) при повышении температуры а при понижении — увеличиваются. Характеристики пластичности  [c.41]

Нагревание резины и пластмасс приводит к быстрому падению их предела прочности. При охлаждении эти материалы становятся хрупкими, их характеристики пластичности уменьшаются.  [c.41]

Термомеханическая обработка сплавов ОТ4 и ОТ4-1 системы титан— алюминий — молибден приводит к резкому возрастанию пластичности и вязкости этих материалов и, в отличие от сплава ВТЗ-1, к некоторому снижению их прочности. Максимальные значения характеристик пластичности закаленных сплавов ОТ4 и ОТ4-1 достигаются после 50% предварительной деформации, что также соответствует максимальному количеству остаточной (3-фазы [100].  [c.69]


Верхнюю границу хрупко-пластичного перехода часто определяют как температуру, при которой кривые изменения характеристик пластичности выходят на насыщение . Приведенные выше определения границ хрупко-пластичного перехода основаны на температурных зависимостях механических свойств материалов.  [c.205]

При определении характеристик пластичности материалов гибких элементов в области высоких температур методически трудно обеспечить точное измерение и запись удлинения образцов. При расчете по перемещению под-  [c.120]

Оба предложенных способа испытания гибких образцов на растяжение позволяют увеличить точность определения характеристик пластичности материалов. Э( ект достигается исключением из результата измерения удлинения погрешностей, вызываемых деформацией нерабочих участков образца, его проскальзыванием и обжатием в захватах.  [c.121]

Устройство дает возможность определить истинную характеристику пластичности материалов, образцы из которых образуют при растяжении шейку. Эти характеристики позволяют получить более достоверную информацию о механических свойствах испытываемых материалов.  [c.133]

Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

Рассмотренные особенности деформирования и разрушения не являются общими для термоусталостных испытаний. Различное сочетание свойств материалов (теплофизические характеристики и характеристики прочности и пластичности), а также геометрии испытываемых образцов и жесткости нагружения, определяющих поле температур, кинетику циклического термического нагруже-  [c.51]

Учитывая, что при повышенных температурах для ряда материалов окончательному разрушению предшествует образование макротрещин, в уравнениях (8), (10) и (11) следует использовать характеристики пластичности, соответствующие моменту образования макротрещин. В общем случае можно полагать, что величины г з т должны находиться в пределах между г ) , (равномерная деформация, соответствующая пределу прочности) и ijj (деформация в шейке в момент разрушения). При отсутствии экспериментальных данных о величинах в расчетах можно использовать величины г1)ь, зависящие от времени (такое предположение идет в запас прочности).  [c.103]

Поперечные градиенты являются источниками ошибок при определении предела прочности., испытуемого материала, а продольные искажают характеристики пластичности и определяемые по обычной методике значения пределов упругости и текучести. В случае длительных статических испытаний пластичных материалов результаты нельзя считать достоверными вследствие изменения сечения образца на отдельных участках и возникающих локальных тепловых концентраций. Метод целесообразен при испытаниях металлокерамических материалов типа карбида кремния, а также хрупких жаропрочных, материалов с высоким электросопротивлением при условии соблюдения мер для выравнивания температуры по всему объему образца.  [c.285]

Цель настоящей книги состоит в изложении методов расчета элементов конструкций из неоднородных материалов, механические характеристики которых за счет воздействия внешней среды или технологии изготовления являются непрерывными функциями координат. В книге рассматриваются только линейна упругие материалы, что, однако, не ограничивает возможностей применения приводимых в ней результатов. Известно, что многие задачи, решаемые с учетом пластичности, ползучести или вязко-упругости, обычно сводятся к соответствующим упругим.  [c.5]

При расчете конструкций, изготавливаемых из материалов с пониженной пластичностью в интервале эксплуатационных температур (при температурах деформационного старения), характеристики пластичности по п. 3.4.1 принимаются для температур, соответствующих минимальным значениям ф/. Повышение величин 0 ,2, Ов и сг-т за счет старения в расчетах не учитывается.  [c.228]


Нередко детали машин или элементы строительных конструкций работают в зоне повышенных и пониженных температур. Для расчета на прочность таких объектов нужны сведения о характеристиках прочности и пластичности именно при различных температурах эксплуатации. В современной справочной литературе дпя некоторых материалов такие данные можно найти. Мы лишь укажем на общую тенденцию чем выше температура испытания образца металла или сплава, тем ниже характеристики прочности и выше характеристики пластичности. Соответствующим образом трансформируются и диаграммы деформирования уменьшается высота по оси а и увеличивается ширина по оси е. При достаточно высокой температуре пластичность может возрасти настолько, что становится возможной пластическая обработка металлов (прокатка, ковка и т. п.).  [c.56]

Однако в пределах тех напряжений, при которых материал обычно работает в сооружениях, наблюдающиеся отклонения от закона Гука незначительны. Поэтому при практических расчетах заменяют криволинейную часть диаграммы соответствующей хордой (рис. 22) и считают Рис. 22. модуль Е постоянным. Это тем более допустимо, что механические характеристики хрупких материалов изменяются для отдельных образцов в более широких пределах, чем характеристики пластичных материалов поэтому нет смысла пользоваться более точными выражениями зависимости между напряжениями и деформациями.  [c.52]

Величины б и ф служат характеристиками пластичности материала Условно считают, что к пластичным могут быть отнесены материалы, для которых 6 5%. При б<5% материалы относят к х р у п к о-п ластичным или к хрупким. Примерами пластичных материалов являются мало- и среднеуглеродистые стали, медь, латунь к хрупкопластичным — некоторые марки легированной стали типичные хрупкие материалы — серый чугун, закаленная инструментальная сталь, камень.  [c.220]

Отличительной особенностью оболочковых конструкций по сравнению с другими металлоконструкциями являются то, что их соединения должны у довлетворять не только у словиям прочности и надежности, но и плотности. Выполнение этих условий наиболее просто и надежно обеспечивается в сварных оболочках. К числу особенностей изготовления оболочковых конструкций следует отнести также и то, что при заготовке для них отдельных элементов применяются такие операции как штамповка, холодная гибка, правка и т.п., которые связаны с протеканием больших тастических деформаций в заготовках и со значительным использованием запаса пластичности материала. Это приводит к том, что к материалам оболочковых конструкций, как гтравило, предъявляются повышенные требования по характеристикам пластичности  [c.70]

Остальные характеристики пластичности относительное удлинение, ударная вязкость , глубина погружения щарика в испытаниях на штампуемость листовых материалов (проба Эриксена ), угол загиба и количество чбов с перегибами листовых проб уже не могут быть Jльзoнaны для определения предела пластичности без зработки соответствующих методов пересчета с этих драктеристик на величину Лр.  [c.489]

При выборе материалов конструкций необходимо учитывать следующие факторы 1) экономические аспекты, связанные с общим ресурсом работы, и их взаимодействие 2) обрабатываемость материала, позволяющую изготовить деталь требуемой формы или конструкции 3) наличие материала нужной формы и размеров 4) состав композиций и возможность определения требуемых характеристик 5) объем предполагаемой продукции 6) производственный процесс, требования к механической обработке, сборке и инструменту 7) статические и усталостные свойства 8) характеристики пластичности материала 9) сопротивление воздействию окружающей среды 10) противоударные свойства и сопротивление вандализму 11) термическое расширение и теплоизоляционные свойства 12) проблемы безопасности при изготовлении и применении изделия 13) установленные нормативы 14) предварительные капиталовложения, расходы на проведение экспериментов 15) наличие естественных сырьевых ресурсов 16) возможность вторичного использования отходов 17) легкость транспортировки материалов и изделий 18) корпоративную и частную инициативу 19) глобальные факторы международные, государственные, политические и коммерческие.  [c.495]

Работоспособность жаропрочных материалов в значительной степени зависит от сопротивления деформированию и разрушению при ползучести, а также от деформационной способности при ддитедьном разрыве. От характеристик пластичности зависит способность материала выравнивать напряжения в зоне их концентрации, ослаблять влияние кратковременных перегрузок, и, наконец, исчерпание деформационной способности приводит к преждевременным разрушениям.  [c.67]

Сопротивление малоцикловой прочности, как известно [1, 2, 41, коррелирует с характеристиками пластичности. Применительно к условиям неизотермического нагружения существенно также, что материал подвергается действию всего диапазона переменных температур в каждом цикле нагружения, а пластичность конструкционных материалов в диапазоне реальных температур цикла нагрева, как правило, довольно не постоянна [1,41, и для многих из них наблюдается провал пластичности , как это, например, следует из рис. 2, а для жаропрочного сплава ЭП-693Д. Следует отметить также, что располагаемая пластичность многих высоколегированных стареющих конструкционных сталей и сплавов связана с эффектом охрупчивания и в связи с этим определяется временем циклического деформирования и длительностью пребывания материала при высоких температурах.  [c.37]

В монографии обобщены теоретические и экспериментальные исследования пластичности, ползучести и долговечности материалов при простых и сложных нестационарных нагружениях. Экспериментально показано, что основные гипотезы теории пластичности, ползучести и долговечности при сложных нестационарных процессах нагружения нарунгаются. Дана оценка влияния различных параметров сложности нагружения на основные характеристики пластичности, ползучести и долговечности. Приведены обобщающие уравнения и критерии предельного состояния материалов при сложных процессах нагружения.  [c.440]


Макромеханика композиционных материалов по ключевым характеристикам механических свойств, полученным при испытании на растяжение, сжатие и на сдвиг тонких плоских образцов однонаправленных материалов, позволяет рассчитать прочностные и упругие свойства композитов с перекрестным расположением слоев [3, 4]. Ключевыми свойствами являются упругие константы ц, Е22, V12, G12 и характеристики прочности оц и стгг- В отдельных случаях необходимы характеристики пластичности ец, 622 и Т12 Использованные обозначения ориентировок показаны на рис. 1.  [c.363]

В расчетах на прочность либо в расчетах напряженного состог>-ния принято, что при однородном одноосном напряженном состоянии вдоль цилиндрического или плоского образца, каким бы он не был длинным, действуют одинаковые напряжения во всех сечениях. Однако в действительности относительное удлинение в разных частях образца изменяется от самого незначительного до наибольшего около места разрыва (шейка образца). В частности, в связи с этим было признано, что более показательной характеристикой пластичности материала является поперечное сужение, которое сравнительно легко определяется для цилиндрических образцов и значительно сложнее —для листовых материалов.  [c.47]

На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

Таким образом, повышение прочности у титановых сплавов так же, как и у других конструкционных материалов, вызывает снижение характеристик пластичности в линейном и особенно в плосконапряженном состоянии. Одновременно наблюдается уменьшение разрыва между сго.г и S, , а также диспропорции между увеличением истинного сопротивления разрыву и предела текучести, сопротивления срезу, момента кручения. Указанные зависимости у титана выглядят более четко, чем, например, у стали, поскольку повышение прочности титановых сплавов как за счет легиров-ания, так и за счет термической обработки не сопровождается изменением тонкой структуры,  [c.89]

Характеристики пластичных смазочных материалов общего назначения для нодншпников качения  [c.156]

Располагаемая пластичность (деформационная способность) конструкционных материалов. В формировании предельного мало-циклового повреждения при неизотермическом нагрул ении значима роль характеристик кратковременной и длительной статической прочности и пластичности применяемых материалов, прежде всего длительной пластичности, которая коррелирует с сопротивлением малоцикловой усталости. Срок эксплуатации современных термически высоконагруженных аппаратов и установок в зависимости от их назначения изменяется в широких пределах — от нескольких сотен до нескольких десятков тысяч часов. Экспериментальные исследования временной зависимости характеристик пластичности при длительном разрыве [2, 29, 56, 109] показали, что они существенно изменяются с течением времени. Характерно, что применяемые конструкционные жаропрочные стали и сплавы для деталей, работающих при высоких температурах, являются деформационно стареющими материалами, охрупчнвающимися в диапазоне рабочих температур и в процессе длительной эксплуатации.  [c.75]

Рассмотрим вопросы прочности и особенности условий разрушения. В общем случае процесс длительного малоциклового нагружения сопровождается накоплением односторонних деформаций, вызываемых циклической анизотропией свойств материалов, асимметрией цикла нагружения (по напряжениям, длительностям выдер-л<ек) и т. п. Когда процесс накопления односторонних деформаций выражен, наблюдается так называемый квазистатический тип малоциклового разрушения с характеристиками пластичности,, соответствующими условиями статического (однократного) нагружения до разрыва. Как правило, в конструкциях за пределами упругости работает материал только в зонах максимальных напряжений. За счет стесненности пластических деформаций в большинстве случаев нагружения накопление односторонних деформации подавлено или отсутствует. Под действием циклических деформаций развиваются иоврех дения, приводящие к малоцикловому усталостному разрушению, когда в зонах максимальных циклических деформаций образуются макротрещины усталостного типа.  [c.95]

Микромеханизмы возникновения мгновенных пластических деформадий и развивающихся во времени деформаций ползучести тесно связаны между собой, поэтому необходимо учитывать взаимодействие процессов ползучести и пластического деформирования, которое усиливается с ростом температэфы. Кроме того, механические свойства конструкционных материалов изменяются с температурой не только как мгновенная реакция на ее текущее значегше, но и о некоторым запаздыванием вследствие постепенной перестройки микроструктуры материала со скоростью, которая также пропорциональна множителю вида (4.1.1). Все это затрудняет при повышенных температурах раздельное определение характеристик пластичности и ползучести материала в экспериментах и заставляет учитывать взаимное влияние процессов ползучести и пластического деформирования на напряженно-деформированное состояние и работоспособность теплонапряжегшых конструкций [28].  [c.176]

В этом варианте материал представляется совокупностью нагруженных в одном направлении совместно деформируемых структурных элементов, обладающих индивидуальными характеристиками пластичности и по.лзучести (рис.4.5.5). Поведение каждого структурного элемента качественно соответствует поведению отдегшно взятой системы скольжения в кристаллическом зерне [28] и описывается механическим аналогом, состоящим из двух упругих и двух вязких элементов и элемента сухого трения. Различие в характеристиках структурных элементов отражает, прежде всего, различную ориентацию систем скольжения в зернах и зерен в по-ликристаллическом материале и позволяет путем согласования с экспериментальными данными интегрально учесть влияние ряда дополнительных факторов, которые не учитываются даже физической моделью поликристалла.  [c.237]


При определенных температурах нагрева композиции перед прессованием и определенных режимах этого процесса границы между частицами алюминия исчезают и полученный по такой технологии модифицирующий пруток можно считать композиционным материалом. Такие прутки выполняют роль носителя модификатора — при их введении в расплав алюминиевая матрица расплавлялась и частицы НП оказывались в объеме жидкого металла, минуя контакт с атмосферой. Экспериментально установлено, что независимо от химиче-ското состава НП, их кристаллической системы и класса, элементов симметрии, пространственной группы, структурного типа, периода решетки, плотности, температуры плавления и других рассмотренных параметров все они обладали близким модифицирующим эффектом. Как показали результаты исследований, зарождающая способность частиц НП определяется самой технологией изготовления модифицирующих композиций — совместным прессованием частиц алюминия иНП и способом их введения в расплав. В результате прессования исключительно твердых частиц НП в контакте с алюминием, обладающим высокой пластичностью, происходят его нагрев и дополнительное повышение характеристик пластичности, при этом на поверхности частиц образуется монослой алюминия, который впоследствии и служит подложкой для наращивания кристаллического материала при охлаждении и затвердевании металла.  [c.261]

Общая характеристика и классификация композиционных материалов. Композиционными называют сложные материалы, в состав которых входят отличающиеся по свойствам нерастворимые друг в друге компоненты. Основой композиционных материалов является сравнительно пластичный материал, называемый матрицей. В матрице равномерно распределены более твердые и прочные ве1цества, называемые ирочнмшеляд/w или наполнителями. Матрица может быть металлической, полимерной, углеродной, керамической. По форме упрочнителя композиционные материалы делятся на дисперсно-упрочненные (с нуль-мерными упрочнителями), волокнистые (с одномерными упрочните-лями), слоистые (с двумерными упрочнителями).  [c.260]

В связи с тем что истинная деформация еист в шейке сильно локализуется (деформация, возникающая в момент спонтанного дорыва в момент исчерпания несущей способности образца), не удается связать между собой механические свойства и характеристики пластичности (рис. 5.25). Однако если такое сравненио сделать по удлинению, для которого вклад деформации, локализованной в шейке, не столь существен, то видно (рис. 5.26), что между механическими характеристиками (От и (Ть) и удлинением отдельных классов материалов наблюдается определенная связь. Причем чем выше предел текучести, тем ниже удлинение, и для низкопрочных состояний (состояния с низкими пределами текучести, например после отжига) существует предельное значение для данного класса материалов предела текучести, которой определяется, по-видимому, свойствами матрицы в чистом состоянии (например, а-железа для сталей), а удлинение при этом может отличаться за счет разных уровней равномерного удлинения.  [c.206]


Смотреть страницы где упоминается термин Материалы — Характеристики пластичные : [c.29]    [c.89]    [c.116]    [c.189]    [c.191]    [c.216]    [c.96]    [c.125]    [c.140]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.291 ]



ПОИСК



Влияние внешних воздействий на характеристики прочности и пластичности материалов

Диаграмма растяжения образца пластичного материала. Механические характеристики пластичности и кратковременной прочности Разрушение

Жесткость материала — Понятие 92 — Характеристики пластичност

Материал пластичный

Материалы — Характеристики

Сравнительная характеристика механических свойств пластичных и хрупких материалов

Сравнительная характеристика механических свойств пластичных и хрупккх материалов

Характеристики длительной прочности, пластичности н ползучести конструкционных материалов

Характеристики пластичности

Характеристики пластичности материал

Характеристики пластичности материал

Характеристики пластичности материал при ударной нагрузке

Характеристики прочности и пластичности металлических материалов при высоких скоростях деформации



© 2025 Mash-xxl.info Реклама на сайте