Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование при разработке РСА

Использование готовых производственных решений может привести к их простому повторению. Необходимо, чтобы технологический процесс формировался путем разработки типовых оптимальных решений назначения плана обработки элементарных поверхностей маршрута обработки детали и построения станочных операций на базе научных основ технологии машиностроения, передового производственного опыта и математического моделирования. Разработка оптимальных типовых технологических решений позволит на более строгой научной основе создавать оптимальные технологические процессы также для условий единичного и мелкосерийного производства.  [c.97]


Движущиеся в пласте флюиды неоднородны. При моделировании процессов вытеснения нефти водой при давлениях, выше давления насыщения нефти газом, достаточно использовать двухфазную математическую модель. При моделировании разработки нефтегазовых залежей при существенном влиянии гравитационного разделения фаз на процесс разработки, при прогнозировании эффективности процесса закачки воды и газа необходима модель трехфазной фильтрации нефти, газа и воды. Для расчета процесса разработки газоконденсатных пластов, оценки эффективности отдельных методов увеличения нефтеотдачи пластов необходимо рассматривать нефть как смесь углеводородных компонентов, т.е. использовать композиционные модели.  [c.130]

Моделирование — разработка представления или создание имитирующего объекта для какой-либо проблемы или процесса описание или приведение аналога, позволяющего визуально наблюдать то, что нельзя увидеть непосредственно.  [c.389]

В таких ситуациях на основе результатов имитационного моделирования формулируются ТЗ на разработку новых ПМК или их элементов. Вопросы разработки сложных программных систем составляют содержание специальной технической дисциплины по программному обеспечению САПР.  [c.364]

Одним из наиболее перспективных путей развития технического обеспечения САПР является разработка и применение специализированных процессоров или ЭВМ, ориентированных на выполнение однотипных трудоемких проектных процедур. Выше (стр. 254) говорилось о специализированных ЭВМ для логического моделирования, позволяющих ускорить решение задач моделирования на несколько порядков. Другими примерами специализированных процессоров или ЭВМ для САПР служат трассировочные машины, процессоры для быстрого преобразования Фурье, процессоры графических процедур. Известны и такие специализированные процессоры, как процессоры СУБД, процессоры для ускорения выполнения матричных операций и т. п. Актуальность построения специализированных процессоров для САПР обусловлена наличием трудоемких вычислительных процедур, увеличением размерности решаемых задач, а возможности построения таких процессоров расширяются в связи с появлением СБИС, средств их проектирования и изготовления, с дальнейшим ростом степени интеграции микросхем.  [c.382]

Существующие инструментальные средства автоматизации разработки программного обеспечения позволяют проводить структурирование программ с разделением их на модули, производить оценку показателей связности н сцепления модулей, документировать результаты разработки, производить трансляцию отдельных фрагментов программ на терминальный язык программирования, моделировать работу программного комплекса по его функциональным и (или) эксплуатационным спецификациям. По результатам моделирования можно на ранних этапах проектирования приблизительно оценить запросы систем-  [c.387]


Целесообразность включения структурных компонентов дизайна в систему графической подготовки студентов втуза определяется двумя аспектами. Прежде всего, дизайн — это поисковое конструирование, отражающее требование прогнозирования потребительско-эксплуатационного качества будущего технического изделия. Кроме того, основной метод дизайнера — художественное конструирование — представляет собой визуально-графический метод композиционного формообразования, который сходен по своей структуре с методом машинной разработки изделия, осуществляемой в графической подсистеме САПР. Ориентированный на дизайн, метод пространственно-графического моделирования оказывается органически связанным с проблемой автоматизации учебно-проектировочной деятельности студентов, а также с вопросами поискового конструирования.  [c.4]

В качестве отправной точки при разработке пространственно-графического моделирования целесообразно ориентироваться на графические средства поискового конструирования, сложившиеся в дизайне.  [c.22]

Для разработки формирующего обучения по простран-ственно-графическому моделированию большой интерес представляет детальное изучение психологических механизмов пре-  [c.88]

При реализации данного действия на ЭВМ необходима специальная программа, состоящая из двух структурных частей поиск выступающих вершин изображения, тональная обработка тени и полутени изображения. Моделирование ориентировочной части действия заключается в отыскании тех вершин изображения, в которых сходятся одновременно три видимых ребра, и в проверке углов между этими ребрами. Если все три плоских угла больше 90°, то вершина определяет те плоскости, на которых осуществляются последующие операции тональной разработки плоскостей.  [c.118]

Таким образом, обучение студентов методам пространственно-графического формообразования технических структур является необходимым условием развития у них компьютерного мышления. Необходимость дидактической разработки целостной структуры курса пространственно-графического моделирования на базе ЭВМ диктуется быстрыми темпами развития автоматизации проектирования. На сегодняшний день наглядные изображения играют вспомогательную роль, используются в основном как иллюстрация, поясняющая текст или чертеж в ортогональных проекциях. В современном учебном процессе не уделяется должного внимания структурно-геометрическим основам наглядных изображений, формированию требуемых навыков пространственно-графического формообразования. Лишь небольшое количество студентов может успешно справиться с задачами графического анализа и синтеза объемно-пространственных структур.  [c.159]

Пространственно-графическое формообразование в учебных заданиях подразделяется на три структурных компонента геометрический, конструктивный и технологический. Геометрический аспект формообразования является основным, им определяется процесс разработки пространственной, метрической структуры, а также главное содержание действий анализа верности отображения формы на ее графической модели. Конструктивный аспект выступает на первый план при анализе связи многокомпонентного устройства, рассматриваемого как функциональное целое. Технологический аспект определяет логику формообразования детали, ее строения в соответствии с прогрессивной технологией. Идея простран-ственно-графического моделирования вполне совпадает с концепцией качества в технике, естественно вытекает из ее основных положений.  [c.181]

Технология разработки ПП АВЧ рабочей КД. Последовательность стадий и этапов разработки ПП АВЧ, а также методы и средства, применяемые при этом, называют компьютерной технологией или технологией разработки ПП АВЧ. Одна из возможных схем такой технологии, много лет применяемая на кафедре ИГ МАИ, показана на рис. 12.3. Основными стадиями технологии разработки ПП АВЧ являются моделирование, проектирование, программирование и использование ПП. Каждая из этих стадий имеет несколько этапов.  [c.354]

Стадия моделирования — это разработка исходной графической модели (ИГМ) множества типовых или подобных деталей.  [c.354]

Поэтому актуальной проблемой АП является проблема автоматизации разработки программных систем. В САПР значительное внимание уделяется вопросам создания метаязыков программирования, предназначенных для описания программного обеспечения на верхних иерархических уровнях его проектирования. Эти метаязыки позволяют лаконично описывать структуру проектируемого программного обеспечения, отдельным операторам метаязыка могут соответствовать достаточно крупные блоки программного обеспечения, насчитывающие десятки — сотни операторов языка программирования типа ФОРТРАН. Метаязыки используют для моделирования работы создаваемых программных систем, описания заданий на программирование отдельных модулей. Актуальной задачей является создание таких метаязыков и трансляторов с них, которые могли бы выполнять роль систем программирования. При наличии этих систем не потребовалось бы трудоемкое кодирование алгоритмов на традиционных языках программирования типа ФОРТРАН, ПЛ/1 и т. п.  [c.111]


При разработке технических устройств конструктор стремится оптимизировать факторы, влияющие на качество процессов, обеспечивающих наиболее эффективное достижение поставленной цели. Это определяет и задачи исследовательского характера, в которые должно входить теоретическое и экспериментальное изучение явлений, используемое в дальнейшем для описания или моделирования рабочих процессов технических устройств на этапе создания опытных образцов новой техники.  [c.28]

Эти цели достигаются применением математических методов и вычислительной техники, разработкой эффективных математических моделей, методов многовариантного проектирования и оптимизации, автоматизации рутинных работ, а также заменой натурных испытаний моделированием.  [c.52]

При моделировании расчетного ПП ЭМП учитывают следующее. Множество конструктивных вариантов активной части ЭМП можно формально генерировать построением дерева вариантов, как это указано в гл. 2. Однако опыт разработки САПР ЭМП в проектирующих организациях показывает, что в большинстве случаев класс проектируемых объектов достаточно узкий и количество конструктивных признаков вариантов мало, что позволяет ограничиться построением перечня или матрицы вариантов исходя из имеющегося опыта проектирования. В результате основное внимание при моделировании ПП уделяется построению расчетных моделей ЭМП, формулировке задач и выбору методов их оптимального проектирования, а также сравнительному анализу и отбору вариантов.  [c.119]

Следующим после моделирования и тесно с ним связанным этапом в разработке технологии автоматизированного проектирования является алгоритмизация процесса проектирования (ПП). Здесь следует выделить такие процессы, как разделение человеко-машинных процедур, разработка алгоритмов действий проектировщика, разработка вычислительных алгоритмов для расчетов ЭМП и принятия оптимальных решений, анализ и выбор наилучших алгоритмов. В результате алгоритмизации ПП детализируется настолько, насколько это требуется для его программно-аппаратной реализации.  [c.139]

Всесторонний функциональный анализ ЭМП в САПР требует разработки цифровых моделей достаточно универсального характера, с помощью которых можно моделировать все необходимые процессы и характеристики. Следует отметить, что интерес к цифровому моделированию динамических режимов ЭМП, как установившихся, так и переходных, возник одновременно с появлением ЭВМ первого поколения. Однако время расчетов динамических процессов на этих ЭВМ оказалось столь велико, что первые цифровые модели, выполненные в виде отдельных программ, не имели практического применения. И только в ЭВМ третьего поколения удалось сократить время расчетов динамических процессов ЭМП до нескольких минут, сохранив при этом высокую точность вычислений. В связи с этим стало реальным создание цифровых моделей ЭМП медленного типа для поверочных расчетов и корректировки характеристик в различных режимах работы.  [c.225]

Следует отметить, что определение связи между свойством и фрактальной структурой - задача достаточно сложная, так как существующие модели, устанавливающие эти связи для периодических структур, неприменимы к фрактальным. Решение указанной задачи требует разработки фрактального анализа микроструктур и определения области существования структурного самоподобия, а таюке разработки фрактального синтеза, включающего моделирование характерных геометрических форм (путем итераций) как способа для изучения начальных структур в реальных материалах.  [c.92]

Поскольку математические методы дают только общий подход к решению проектных задач, необходимо конкретизировать формы их применения в виде алгоритмов автоматизированного выполнения основных этапов проектирования. Этому посвящена гл. 6, в которой рассмотрены алгоритмы выбора аналогов проектируемого объекта, разработки эскиза конструкции, параметрической оптимизации, детального анализа процессов в объекте, определения допусков на параметры и моделирования испытаний ЭМУ, автоматизированного формирования проектной документации.  [c.7]

Ранее были рассмотрены математические методы, нашедшие применение в автоматизированном проектировании электромеханических устройств для моделирования физических процессов в объектах, оптимизации принимаемых проектных решений, а также для выполнения конструкторских работ. Вместе с тем математические методы оперируют обобщенными понятиями и по этой причине не могут в полной мере учитывать особенности конкретной области применения. Для их практического использования в автоматизированном проектировании необходимо перейти к особой цифровой форме представления математических моделей, а на основе математических методов разработать конкретные алгоритмы автоматизированного выполнения проектных процедур. Рассмотрим поэтому особенности построения основных алгоритмов автоматизированного проектирования ЭМУ. При этом следует иметь в виду, что в силу разнообразия классов ЭМУ здесь отражены только общие подходы к разработке соответствующих алгоритмов. Примени-  [c.191]

Разработка алгоритмов статистической обработки результатов моделирования представляет собой вторую основную проблему реализации стохастической математической модели на ЭВМ. Наиболее полная информация об ожидаемом разбросе значений рабочих показателей может быть получена из гистограммы. Действительно, зная эмпирическое распределение значений показателей, не составляет труда определить параметры этого распределения и оценить вероятность удовлетворения требований ТЗ. Основная трудность, возникающая при разработке достаточно универсального и эффективного алгоритма построения гистограмм, состоит в необходимости совмещения во времени операций определения границ разброса по анализируемому показателю (поскольку в общем случае эти границы заранее неизвестны и формируются в процессе выполнения заданного количества статистических испытаний) и подсчета частот попадания значений показателя в интервалы разбиения диапазона разброса. Действительно, предварительное определе-256  [c.256]


При разработке систем АКД. как и других систем, опирающихся на программные средства машинной графики, выделяются задачи моделирования, предназначенные для создания, преобразования и хранения моделей ГИ (моделирующие системы) задачи отображения этих моделей на графических устройствах и организации графического интерфейса пользователя с ЭВМ (базовые графические системы).  [c.19]

Математическая модель машины или аппарата отражает их рабочие процессы с известным приближением. Расчетные соотношения, входящие в математическую модель, как правило, отражают закономерности отдельных явлений, составляющих рабочий процесс, без учета взаимного влияния. Например, формулы для определения гидравлического сопротивления различных участков гидравлического тракта получены на основе экспериментов в идеализированных условиях (равномерное поле скоростей на входе, однородное температурное поле, отсутствие внешних возмущений и т. д.). В реальных конструкциях эти условия не соблюдаются. Поэтому иногда при разработке нов ых конструкций прибегают к техническому моделированию устройств, когда до постройки машины или аппарата их отдельные качества или итоговые характеристики изучаются на моделях в лабораторных условиях. Например, при продувке уменьшенных моделей самолетов или автомашин в аэродинамических трубах можно выявить их сопротивление движению и зависимость этого сопротивления от формы их отдельных элементов, устойчивость машины при дв ижении и режимы, опасные с точки зрения потери устойчивости, и т. д. Таким образом, техническое моделирование представляет собой разновидность экспериментального исследования, при котором изучаются характеристики рабочего процесса конкретной машины или аппарата на модельной установке.  [c.23]

Моделирование ОЭП осуществляется в два этапа составление ТЗ, разработка структуры модели и выбор исходных значений параметров модели.  [c.142]

Линейная диаграмма. Линейная диаграмма строится после уяснения типовой схемы прохождения заказа и последовательного рассмотрения этапов создания изделия (математическое описание задач системы, алгоритмирование, математическое и полунатурное моделирование, разработка принципиальной схемы, конструирование изделия, технологическая подготовка производства, материально-техническое обеспечение, изготовление изделия, настройка, испытание и т. д.).  [c.151]

Python (www.python.org) является очень удобным высокоуровневым языком программирования и создания сценариев, также приобрел мировую известность благодаря своим возможностям быстрого достижения результатов. Разумеется, Python развивается как мощное средство для инженеров, проектирующих и тестирующих электронные устройства, в частности для решения задач системного моделирования, разработки тестовых устройств и общего управления устройством.  [c.322]

Для описания структуры моделируемого объекта используют структурные модели, а для расчета количественных характеристик — количественные модели. Устанавливают следующий порядок разработки математических моделей отбор элементов объекта моделирования установление отношений между элементами объекта моделирования группирование элементов и отношений выбор класса типовых математических моделей разработка математических моделей отбор количественных характеристик объекта моделирования установление отнои ений между количественными характеристиками группирование количественных характеристик и отношений выбор класса типовых математических моделей разработка количественных моделей.  [c.127]

Диалоговое моделирование. Наличие в методике макромоделирования эвристических и формальных операций обусловливает целесообразность разработки моделей элементов в диалоговом режиме работы с ЭВМ. Язык взаимодействия человека с ЭВМ должен позволять оперативный ввод исходной информации о структуре модели, об известных характеристиках и параметрах объекта, о плане экспериментов. Диалоговое моделирование должно иметь программное обеспечение, в котором реализованы алгоритмы статистической обработки результатов экспериментов, расчета выходных параметров эталонных моделей и создаваемых макромоделей, в том числе расчета параметров по методам планирования экспериментов и регрессионного анализа, алгоритмы методов поиска экстремума, расчета областей адекватности и др. Пользователь, разрабатывающий модель, может менять уравнения модели, задавать их в аналитической, схемной или табличной форме, обращаться к нужным подпрограммам и тем самым оценивать результаты предпринимаемых действий, приближаясь к получению модели с требуемыми свойствами.  [c.154]

Дальнейшее развитие инструментальных средств разработки программного обеспечения должно иметь целью автоматизацию синтеза программ различных классов, в том чйсле диалоговых мониторов, различных языковых процессоров, генерацию экономичных версий ПМК моделирования и верификации проектных решений из имеющихся инвариантных средств и т. п.  [c.388]

В современной педагогике имеются два направления, представляющие интерес для целей дидактической разработки процесса графического моделирования. Это психологопедагогическая разработка проблемного обучения [29, 36] и теория поэтапного формирования умственных действий [12, 53].  [c.68]

В курсах Технология самолетостроения к Оборудование самолетов столь же активно используются нечертежные формы графического моделирования. Причем наибольшие затруднения возникают у студентов при прохождении темы Технологические членения самолета . В этом разделе курса студенты сталкиваются с необходимостью выполнения пространственной модели процесса сборки самолета. Особенную слож1Ность 1 леют членения не всего самолета, а отдельных его агрегатов. Входящие в них частные подсборки имеют сложную конфигурацию, кроме того, требуется разместить эти элементарные агрегаты в пространстве в соответствии с принятой структурой членения. На разработку графических схем подобного типа студентам приходится затрачивать большое количество времени.  [c.166]

Несмотря на то что вопросы моделирования и анализа технических объектов в САПР решены в большей мере, чем вопросы структурного синтеза, сохраняются также проблемы развития и совершенствования математического обеспечения и для этих процедур. Прежде всего нужно отметить отсутствие удовлетворительных по точности и экономичности математических моделей многих объектов и процессов, к которым относятся явление механического удара, процессы механической обработки деталей резанием, физические процессы в полупроводниковых СБИС с субмикрометровыми размерами и др. Значительный практический интерес представляет разработка библиотек макромоделей типовых объектов в различных предметных областях, например в двигателестроении, микроэлектронике, реакторостроении, робототехнике и т. п.  [c.113]

Один из способов накопления информации при разработке алгоритмов трудноформализуемых задач — наблюдение за деятельностью человека в ходе решения таких задач с последующим описанием отдельных действий. Специфические приемы, которые применяются человеком, называют эвристиками, а способ накопления информации— эвристическим моделированием. Подробнее об эвристическом моделировании и алгоритмах трудноформализуемых задач можно прочитать в книге И. И. Котова и других авторов [12].  [c.159]

Дальнейшее ветвление вариантов происходит за счет возможностей многовариантного построения вычислительных алгоритмов для реализации одних и тех же моделей и методов. Совокупность вычислительных алгоритмов с учетом логических связей между ними и разделения процедур между человеком и машиной можно рассматривать как конечную функциональную (имитационную) модель автоматизированного ПП, готовую к реализации в САПР. Нарастание числа вариантов по мере перехода от семантических моделей к математическим и информационным, а затем к алгоритмическим требует сравнительного анализа этих вариантов и выбора наилучшего. Однако разработка формального аппарата многовариантного синтеза логико-вычислительных алгоритмов ПП для САПР находится в начальной стадии. Отдельные результаты теоретического плана еш,е не привели к созданию и внедрению в инженерную практику формальной методологии синтеза ПП в САПР. Поэтому этап моделирования ПП, очень важный для разработки САПР и их подсистем, все еще выполняется неформально на основе H Ky Vea и опыта проектировщиков ЭМП и разработчиков САПР.  [c.118]


Экспериментальный подход использует статистические методы численного анализа ограничений при различных фиксированных входных величинах. Так, например, можно осуществить упорядоченный или случайный перебор точек в допустимом множестве Dz. Если считать, что N — полное число перебираемых точек, а Nj — число точек, в которых нарушается ограничение Hj, то отношение NjIN будет характеризовать вероятность нарушения данного ограничения. При малой вероятности нарущения ограничение можно считать несущественным. Несмотря на логическую простоту, возможности экспериментального подхода также сильно ограничены из-за большой размерности задачи. Поэтому разработку достаточно универсальных, формализованных методов выделения существенных ограничений можно также отнести к числу нерешенных проблем расчетного моделирования ЭМП.  [c.123]

Фрактальная модель была использована при разработке экстракционного разделения средних нефтяных фракций. Сравнение результатов моделирования в рамках фрактальной теории и лабораторных экспериментов покаг али удовле-творителы ю сходимость полученных данных (рисунок 2.23).  [c.135]

Отмеченное представляет только одну сторону вопроса системного решения задач. Другая же связана с расширением применения математических моделей ЭМУ на внешнюю область — на стадии производства и эксплуатации объекта с учетом случайного характера существующих воздействий. Это необходимо для оценки влияния различных технологических и эксплуатащюнных факторов на качество функционирования проектируемого изделия и позволяет прогнозировать вероятностный уровень его рабочих показателей с необходимыми в этих условиях точностью и достоверностью. Соответствующие модели и алгоритмы анализа должны при этом адекватно воспроизводить характер формирования случайных значений рабочих свойств изделий в различных условиях производства при учете разбросов параметров в пределах назначенных допусков и обладать способностью имитировать влияние на объект различных эксплуатационных факторов параметров источников питания, температуры, вибраций и пр. Такие модели могут служить одновременно основой для разработки алгоритмов моделирования испытаний ЭМУ при проектировании, что позволяет сократить объем и сроки реальных исследований макетных и опытных образцов проектируемых изделий.  [c.98]

Существенным при разработке математических моделей является также обеспечение необходимой их адекватности реальному объекту в интересующем проектировщика отношении, понимаемой как соответствие целей и средств моделирования задачам получения результа-. тов анализа с достаточной точностью и достоверностью на каждом этапе проектирования. Это предполагает более углубленное изучение процессов, учет во многих случаях различных сложных и тонких факторов, разработку соответствующего математического описания, пусть даже за счет усложнения модели. Так, для повышения то шости электромеханических расчетов ЭМУ часто должны быть приняты во внимание высшие гармоники магнитного поля, возможная несимметрия и неси-нусоидальность питания, для тешювых расчетов сделан учет нелинейности тепловых связей и пр.  [c.99]

Основываясь на программных средствах решения задач моделирования, отображения и организации графического диалога пользователя с ЭВМ, разрабатывается прикладное программное обеспечение выпуска КД заданного класса объектов проектирования. Наиболее перспективны системы, ориентированные на интерактивную работу и содержащие средства интерактивного создания и коррекции моделей ГИ. К таким системам относятся интерактивный графический редактор РЕДГРАФ система выпуска конструкторской документации изделий РЭА ПРАМ 1.1 пакет прикладных программ ГРИФ, обеспечивающие возможность интерактивной доработки эскиза трассировки печатных плат и выпуска конструкторской документации системы автоматизированной подготовки конструкторской документации АРАКС, СФОР-ГИ графический редактор интерактивной графической системы ЭПИГРАФ и т.д. Использование БГП, ориентированных на конкретное графическое устройство, при разработке прикладного программного обеспечения снижает его мобильность, затрудняет передачу программных продуктов, требует доработок, иногда значительных, при переходе на новые технические средства отображения ГИ.  [c.26]

С учезом сложности математического моделирования реальных процессов в химической, нефтехимической, нефтегазодобывающей и перерабатывающей отраслях промышленности возникла необходимость в разработке нелинейных математических моделей, адекватно отображающих реальные процессы.  [c.7]

Моделирование — ответственная научная задача, имеющая общее принципиальное и познавательное значение, но его нужно рассматривать только как исходную базу для главной задачи. Последняя состоит в фактическом определении законов природы, в отыскании общих свойств и характеристик различных классов явлений, в разработке экспериментальных и теоретических методов исследования и разрешения различных проблем, наконец, в получении систелатических материалов, приёмов, правил и рекомендаций для решения конкретных практических задач.  [c.68]


Смотреть страницы где упоминается термин Моделирование при разработке РСА : [c.113]    [c.383]    [c.388]    [c.41]    [c.122]    [c.97]    [c.89]   
Смотреть главы в:

Микроволновая аппаратура дистанционного зондирования поверхности земли и атмосферы  -> Моделирование при разработке РСА



ПОИСК



2 — 363—365 — Разработка ных — Разработка

Колтыпин С.И., Петрулевич А.А., Рыбкин Д.Б Разработка геоинформационного моделирующего комплекса и его использование для моделирования переноса загрязнений в системах производственного экологического мониторинга предприятий газовой промышленности

Моделирование на стадии разработки технического задания на проектирование 120 — Вероятность отказа 120 — Время восстановления 121 — Исходные данные для моделирования 124 — Основа математической модели 120 — Схема процесса вероятностного

Разведка месторождений и моделирование их разработки

Разработка

Численное моделирование и проблемы разработки САПР лазерных систем



© 2025 Mash-xxl.info Реклама на сайте