Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные законы переноса вещества

ОСНОВНЫЕ ЗАКОНЫ ПЕРЕНОСА ВЕЩЕСТВА  [c.291]

Основные законы переноса теплоты и массы вещества в коллоидных капиллярнопористых телах  [c.504]

Дифференциальное уравнение переноса вещества выводится из основного закона переноса с применением закона сохранения массы вещества к некоторому произвольно взятому объему тела, ограниченного замкнутой поверхностью.  [c.507]

Основные законы термодинамики достаточно широки, чтобы найти разнообразные применения в физике, химии и технике. В результате развития термодинамики появилось много различных точек зрения при рассмотрении отдельных вопросов. Тем не менее оказалось возможным в пределах данной книги ограничиться основными понятиями и рассмотреть такие применения, которые относятся к превращению теплоты в работу, а также в качестве специальных примеров процессы с переносом вещества и системы с химическими реакциями.  [c.26]


Основной причиной появления молекулярных потоков массы компонентов в смеси является неоднородность их концентраций. Вследствие молекулярного перемешивания смеси осуществляется перенос вещества данного компонента из области с более высокой концентрацией в область с пониженной концентрацией. Этот процесс описывается законом концентрационной диффузии — законом Фика (который во многом похож на закон теплопроводности Фурье)  [c.36]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

Перенос вещества и перенос тепла — подобные процессы и описываются одним и тем же классом дифференциальных уравнений. Основным законом передачи тепла в неподвижной среде является закон Фурье, согласно которому тепловой поток пропорционален градиенту температур  [c.119]

Глава 6 ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ПЕРЕНОСА ТЕПЛОТЫ И ВЕЩЕСТВА  [c.268]

В этом случае движущей силой является градиент концентрации. Так как плотность потока массы направлена в сторону убывания концентрации, а градиент концентрации — в противоположную сторону, то в выражении (19.1) присутствует знак минус . Закон Фика описывает концентрационную диффузию, в результате которой переносится основная доля вещества.  [c.450]

МОДЕЛИРОВАНИЕ ЗВЁЗД — методы нахождения распределений физ. характеристик звёздного вещества (давления, плотности, темп-ры, массы, хим. состава) от центра до поверхности звезды и изменений этих характеристик со временем. Построение моделей даёт возможность установить связь между оси. параметрами звёзд (массой, хим. составом, возрастом) и главными наблюдаемыми характеристиками — светимостью (интегральным потоком излучения), эффективной температурой и ускорением силы тяжести на поверхности. Прослеживая изменения моделируемых параметров звёзд со временем, удаётся описать переменность звёзд и их эволюцию. М. 3. основывается на законах гидродинамики, теории переноса излучения, ядерной физике, статистической физике и др. Одним из основных методов исследования является численное моделирование.  [c.174]


Предложенные методы расчета турбулентного пограничного слоя на проницаемой поверхности можно распространить и на такие условия, когда на поверхности теплообмена протекают химические реакции с выделением или поглощением тепла и образованием газообразных продуктов сгорания. Для диффузионной области горения интенсивность выгорания в основном определяется процессами турбулентного переноса окислителя и продуктов сгорания в пограничном слое. В этом случае остаются справедливыми законы трения и теплообмена (см. гл. 3), учитывающие влияние неизотермичности и поперечного потока вещества.  [c.113]

Такой принципиальной особенностью в процессе переноса теплоты излучением по сравнению с процессом теплопроводности является существование теплового электромагнитного поля. Мы, таким образом, сталкиваемся с новой задачей феноменологического подхода — задачей описания электромагнитного поля. Основой такого описания являются уравнения Максвелла, записанные для различных физических сред. Следует заметить, что система уравнений Максвелла, описывающая законы поведения электромагнитного поля в пространстве заполненным веществом, является неполной (с математической точки зрения) системой. Эту систему уравнений необходимо дополнить некоторыми соотношениями, учитывающими конкретные свойства среды, условия на излучающих и поглощающих телах ИТ. п., естественно, не следующими из основной системы. Ситуация несколько напоминает положение при описании процесса теплопроводности.  [c.5]

В ряде диэлектриков доминирует ионная проводимость, связанная с направленным перемещением ионов примеси и ионов самого диэлектрика. В этом случае осуществляется перенос не только электрического заряда, но и вещества. Под действием внешнего электрического поля анионы движутся к аноду, а катионы - к катоду. Постепенно концентрация носителей заряда уменьшается, поэтому величина ионного тока со временем спадает. Если сделать контакты к диэлектрику (анод) из металла, ионы которого переносят в диэлектрике заряд, то в этом случае обеспечивается свободный обмен носителями заряда и электрический ток спадать не будет. При низких температурах обычно превалирует примесная ионная проводимость, а при высоких - перенос ионов основного вещества. У диэлектриков с ионным характером электропроводности соблюдаются законы Фарадея количество выделившегося при электролизе вещества пропорционально количеству прошедшего через материал электричества.  [c.252]

Для решения выдвигаемых перед нею задач механика жидкости и газа, так же как и теоретическая механика, применяет точные и приближенные математические приемы интегрирования основных дифференциальных уравнений движения, уравнений переноса тепла, вещества и других уравнений, выражающих законы физических процессов в жидкости и газе (например, уравнения электромагнитного поля). Для получения суммарных характеристик явлений используются общие теоремы механики и термодинамики теоремы количества и моментов количеств движения, закон сохранения энергии и др. Значительная сложность явлений вынуждает механику жидкости и газа широко пользоваться услугами эксперимента, обобщение результатов которого приводит к эмпирическим закономерностям, а иногда и к полуэмпирическим теориям. Такие отклонения от дедуктивных методов классической рациональной механики вполне естественны для столь быстро развивающейся науки, как современная механика жидкости и-газа.  [c.14]

Звук по своей физической сути является механической волной с продольным распространением. Для распространения ультразвука необходим материальный субстрат (вещество), при этом колебания передаются от одной субстратной единицы (частицы вещества) к другой, т. е. осуществляется перенос энергии. Имея волновую природу, звук в полной мере подчиняется всем тем законам, которые применимы к другим волновым процессам, например свету. Основными характеристиками ультразвуковой волны являются длина, амплитуда, частота, период, скорость.  [c.45]


В настоящей главе мы познакомимся с уравнениями, по которым вычисляются нормальные и касательные напряжения в вязких жидкостях, и рассмотрим основные законы переноса импульса, тепла и вещества. В следующей главе мы свяжем эти соотношения с законами сохранения и получим систему основных дифференциальных уравнений тепло- и массоиереноса.  [c.25]

Каждый из законов переноса вещества, тепла и количества движения можно сформулировать в эйлеровом смысле, т. е. фиксируя внимание на некоторой неподвижной точке в пространстве. Существуют два основных метода получения эйлеровых уравнений механики жидкости в общем, трехмерном случае. Мы будем называть их материальным методом и методом контрольного объема .  [c.71]

II маесообмена можно получить с помощью дифференциальных урав-лений переноса, выводимых из основных закономерностей переноса тепла и вещества (линейных уравнений потоков), с применениен законов сохранения энергии и массы вещества к некоторому произвольно взятому объему тела, ограниченному замкнутой поверхностью.  [c.246]

Массоперенос относится к одной из тех наук, которые непосредственно исходят из взаимодействия законов сохранения и переноса. Рассматриваемый здесь закон сохранения вещества основан на справедливом для большинства практических задач представлении о неуничтожимо-сти химического атома. Важную роль играет также первый закон термодинамики, выражающий сохранение энергии. Для процессов переноса принимается в качестве основного закон диффузии Фика, связывающий скорость диффузии вещества с локальным градиентом его концентрации. Видное место принадлежит также закону теплопроводности Фурье. Оба эти закона переноса связаны некоторым образом со вторым законом термодинамики.  [c.27]

Коэффициент теплопроводности к в законе Фурье (8.1) характеризует способность данного вещества проводить теплоту. Значения коэффициентов теплопроводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности l==q/grad t равен плотности теплового потока при градиенте температуры 1 К/м. Понять влияние различных параметров, а иногда и оценить значение X можно на основе рассмотрения механизма переноса теплоты в веществе. Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах зависит в основном от скорости движения молекул, которая в свою очередь возрастает с увеличением температуры  [c.71]

Одной из основных ТФХ является коэффициент теплопроводности к q (grad Для идеальных газов и некоторых других веществ к относится к термодинамическим свойствам, т. е. не зависит от пути перехода к данному состоянию. В силу перечисленных выше обстоятельств сырья и продуктов не может характеризовать их свойства, в отдельных случаях возможно даже существование зависимости к (q), что, впрочем, не является опровержением закона Фурье q = — .grad t. Эффективная характеристика переноса к не обладает свойством аддитивности, а теплопроводность смеси может быть выше теплопроводности каждого компонента.  [c.19]

Для многих электроизоляционных материалов характерна ионная электропроводность, связанная с переносом ионов, т.е. явлением электролиза. В ряде случаев электролизу при прохождении через диэлектрик сквозного тока утечки подвергается основное вещество дн-электрика примером может служить обычное стекло, в котором благодаря его прозрачности можно непосредственно наблюдать образование и перенос продуктов электролиза при про-кускании постоянного тока через стекло, нагретое для повышения проводимости (см. ниже), у катода образуются древовидные отложения деядриты) входящих в состав молекул стекла металлов, прежде всего натрия. Еще чаще (по крайней мере, для органических электроизоляционных материалов) встречаются такие случаи, когда молекулы основного вещества диэлектрика не обладают способностью подвергаться диссоциации, но ионная электропроводность возникает благодаря присутствию в материале практически неизбежных загрязнений— примесей воды, солей, кислот, щелочей и пр. Даже весьма малые примеси способны заметно влиять на проводимость диэлектрика поэтому в технике электрической изоляции важное значение имеет чистота исходных продуктов и чистота рабочего места. У диэлектриков с ионным характером электропроводности соблюдаются законы Фарадея количество выделившегося при электролизе вещества пропор-1 ионально количеству прошедшего через материал электричества.  [c.20]

Большинство теоретических исследований теплопроводности газовых смесей являются продолжением и развитием фундаментальных работ Л. Больцмана [11]. Газ или смесь газов структурно моделируется дискретной средой с локальными скоплениями массы в виде атомов и молекул, хаотически движущихся в пространстве. Используя представления молекулярно-кинети-ческой теории, Л. Больцман вывел основное интегро-дифференциальное уравнение газового состояния, решение которого позволяет аналитически выразить коэффициенты переноса, в том числе и коэффициент теплопроводности смеси газов через определяющие параметры (атомные или молекулярные веса компонент, их форму и размеры, радиальную функцию и закон распределения скорости молекул, вид и параметры потенциала межмолекулярного взаимодействия). Однако до настоящего времени геометрические параметры молекул веществ и характер их силового взаимодействия изучены недостаточно полно. Кроме того, исходное интегро-дифференциальное уравнение относится к однородному одноатомному газу, находящемуся в условиях, близких к равновесному состоянию.  [c.233]

В 3.1 в рамках модели сплошной среды на основе общих законов сохранения получены основные гидродинамические уравнения в частных производных, предназначенные для описания осредненных турбулентных движений газофазных реагирующих смесей. Проблема замыкания этих уравнений сопряжена с дополнительными трудностями. Первая трудность возникает из-за необходимости учитывать сжимаемость химически активного континуума. К сожалению, до последнего времени мало внимания обращалось на течения с большими изменениями массовой плотности. В метеорологии рассматривались конвективные сжимаемые течения исключительно при использовании приближения Буссинеска. В этом приближении изменение плотности учитывается лишь в членах, описывающих влияние ускорения силы тяжести. Однако такой подход абсолютно неприменим, например, к турбулентному дефлаграционному горению, когда в потоке могут возникать многократные изменения плотности. Вторая трудность, на которой мы остановимся подробно в Гл. 4, связана с необходимостью моделирования большого числа дополнительных парных корреляций пульсаций температуры и концентраций, появляющихся при осреднении источниковых членов производства вещества в уравнениях, описывающих изменение состава смеси. Эволюционные уравнения переноса для подобных корреляций в случае сжимаемых реагирующих течений сильно усложняются.  [c.136]



Смотреть страницы где упоминается термин Основные законы переноса вещества : [c.3]    [c.16]    [c.330]   
Смотреть главы в:

Теплотехника  -> Основные законы переноса вещества



ПОИСК



Законы переноса

Основные законы

Основные законы переноса теплоты и массы вещества в коллоидных капиллярнопористых телах

Переносье

Потенциал переноса вещества Основные законы перемещения влаги в материалах

ТЕПЛОМАССООБМЕН Основные понятия и законы переноса теплоты и вещества

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте