Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные законы переноса теплоты

Основные законы переноса теплоты и массы вещества в коллоидных капиллярнопористых телах  [c.504]

ОСНОВНЫЕ ЗАКОНЫ ПЕРЕНОСА ТЕПЛОТЫ И МАССЫ  [c.192]

ОСНОВНЫЕ ЗАКОНЫ ПЕРЕНОСА ТЕПЛОТЫ  [c.6]

Глава 6 ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ПЕРЕНОСА ТЕПЛОТЫ И ВЕЩЕСТВА  [c.268]

Основные законы термодинамики достаточно широки, чтобы найти разнообразные применения в физике, химии и технике. В результате развития термодинамики появилось много различных точек зрения при рассмотрении отдельных вопросов. Тем не менее оказалось возможным в пределах данной книги ограничиться основными понятиями и рассмотреть такие применения, которые относятся к превращению теплоты в работу, а также в качестве специальных примеров процессы с переносом вещества и системы с химическими реакциями.  [c.26]


Теплопроводность - это один из видов переноса теплоты от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией к частицам с меньшей энергией Если относительное изменение температуры на расстоянии средней длины свободного пробега мало, то выполняется основной закон теплопроводности - закон Фурье  [c.14]

В книге изложены основные положения технической термодинамики и теплопередачи, знание которых необходимо для понимания принципов работы теплотехнического оборудования. Рассмотрены первый и второй законы термодинамики, термодинамические процессы, циклы двигателей внутреннего сгорания и паротурбинных установок, истечение и дросселирование газов и паров. Изложены основы переноса теплоты теплопроводностью, конвекцией и излучением. Книга снабжена справочными таблицами и расчетными примерами.  [c.2]

Природа процесса конвективного теплообмена состоит в переносе теплоты за счет конвекции жидкости и теплопроводности в ней. К физическим законам, которые управляют этим процессом, относятся закон сохранения энергии, основной закон динамики, закон сохранения массы (принцип неразрывности жидкости), а также закон теплопроводности Фурье и закон вязкого трения Ньютона. Процесс, подобный данному, должен иметь ту же физическую природу и подчиняться тем же законам — он, как и натурный процесс, должен быть процессом конвективного теплообмена.  [c.230]

Поскольку перенос поперек турбулентного пограничного слоя намного интенсивнее, чем в ламинарном слое, это способствует выравниванию скоростей и температур. Профили скорости и температуры в турбулентном ядре пограничного слоя более плоские по сравнению с ламинарным пограничным слоем. Основное изменение скорости и температуры происходит в тонком пристенном слое жидкости, в котором затухают турбулентные пульсации и который называется вязким подслоем. Изменение температуры и скорости в вязком подслое происходит по закону прямой линии. Вязкий подслой представляет собой основное термическое сопротивление переносу теплоты между жидкостью и стенкой. Это сопротивление тем больше, чем больше толщина вязкого подслоя бп и чем меньше теплопроводность жидкости.  [c.262]


Такой принципиальной особенностью в процессе переноса теплоты излучением по сравнению с процессом теплопроводности является существование теплового электромагнитного поля. Мы, таким образом, сталкиваемся с новой задачей феноменологического подхода — задачей описания электромагнитного поля. Основой такого описания являются уравнения Максвелла, записанные для различных физических сред. Следует заметить, что система уравнений Максвелла, описывающая законы поведения электромагнитного поля в пространстве заполненным веществом, является неполной (с математической точки зрения) системой. Эту систему уравнений необходимо дополнить некоторыми соотношениями, учитывающими конкретные свойства среды, условия на излучающих и поглощающих телах ИТ. п., естественно, не следующими из основной системы. Ситуация несколько напоминает положение при описании процесса теплопроводности.  [c.5]

Теплотехника является общетехнической дисциплиной, которая занимает одно из центральных мест в инженерной подготовке специалистов. Это обусловлено тем, что процессы получения, использования и переноса теплоты имеют место практически во всех технических устройствах и технологических процессах современной техники. При расчете двигателей различных типов, холодильных и турбокомпрессорных установок, проектировании технологических процессов производства строительных материалов и дорожных одежд, восстановлении деталей и др. современный специалист должен уметь правильно формулировать и решать разнообразные прикладные задачи с использованием основных законов термодинамики и тепломассообмена.  [c.12]

В отличие от системы (14.45) система уравнений турбулентного пограничного слоя (14.62) является незамкнутой. Число уравнений равно трем, а число неизвестных функций — пяти О, Шх, Wy, и Vт. Следовательно, необходимо добавить еще два уравнения — для определения величин йт и Vт. Как и прочие уравнения, два этих новых уравнения должны явиться результатом выражения некоторых закономерностей в математической форме. Основные физические законы сохранения энергии, импульса и массы уже использованы для уравнений энергии, движения и сплошности. Речь может идти, таким образом, о некоторых теориях и гипотезах, объясняющих механизм турбулентного переноса импульса и теплоты.  [c.363]

Как уже отмечалось, в разд. 2.5, основными механизмами теплопереноса в тепловой трубе являются 1) теплопроводность через стенку корпуса и насыщенный жидкостью фитиль в зоне испарения с последующим испарением на поверхности раздела фаз жидкость — пар 2) осевой конвективный перенос скрытой теплоты парообразования паром из испарителя в конденсатор 3) теплопроводность через насыщенный жидкостью фитиль и стенки корпуса в конденсаторе с последующей конденсацией в этой зоне. Теплопроводность по стенке трубы и насыщенному жидкостью фитилю может быть описана законом Фурье. Конвективный теплоперенос паром может быть описан соотношением Клаузиуса — Клапейрона. Разность температур жидкости и пара на поверхности раздела обычно очень мала и ею можно пренебречь [19]. В нашем случае в соответствии с законом теплопроводности Фурье  [c.74]

Коэффициент теплопроводности к в законе Фурье (8.1) характеризует способность данного вещества проводить теплоту. Значения коэффициентов теплопроводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности l==q/grad t равен плотности теплового потока при градиенте температуры 1 К/м. Понять влияние различных параметров, а иногда и оценить значение X можно на основе рассмотрения механизма переноса теплоты в веществе. Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах зависит в основном от скорости движения молекул, которая в свою очередь возрастает с увеличением температуры  [c.71]

Теплопередача является частью общего учения о теплоте, основы которого были заложены в середине XVIII в. М. В. Ломоносовым, создавшим механическую теорию теплоты и основы закона сохранения и превращения материи и энергии. В дальнейшем развитии учения о теплоте разрабатывались его общие положения. В XIX в. основное внимание уделялось вопросам превращения теплоты в работу. С развитием техники и ростом мощности отдельных агрегатов роль процессов переноса теплоты в различных тепловых устройствах и машинах возросла. Во второй половине XIX в. ученые и инженеры стали уделять процессам теплообмена значительно больше внимания. В литературе имеется много работ тех времен по вопросам распространения и переноса теплоты, некоторые из них сохранили значимость до наших дней. Именно в эти годы, например, была опубликована работа О. Рейнольдса, в которой устанавливается единство процессов переноса теплоты и количества движения, его гидродинамическая теория теплообмена (1874 г.).  [c.4]


Все эти особённости процессов устанавливаются вторым законом термодинамики. Впервые основные идеи, лежащие в основе второго закона термодинамики, были высказаны в 1824 г. Сади Карно. В работе Размышления о движущей силе огня и о машинах, способных развивать эту силу Карно писал, что повсюду, где имеется разность температур, может происходить возникновение движущей силы. Движущая сила теплоты не зависит от агентов, взятых для ее развития, и ее количество определяется исключительно температурой тел, между которыми в конечном счете производится перенос теплоты. Температура газа должна быть первоначально как можно выше, чтобы получить значительное развитие движущей силы. По той же причине охлаждение должно быть как можно больше. Нельзя надеяться хотя бы когда-либо использовать всю движущую силу топлива.  [c.118]

XVIII в., создавшим механическую теорию теплоты и основы закона сохранения и превращения материи и энергии. В дальнейшем развитии учения о теплоте разрабатывались его общие положения. В XIX в. основное внимание уделялось вопросам превращения тепла в работу. С развитием техники и ростом мощности отдельных агрегатов роль процессов переноса тепла в различных тепловых устройствах и машинах стала возрастать. Во второй половине  [c.4]


Смотреть страницы где упоминается термин Основные законы переноса теплоты : [c.171]    [c.330]   
Смотреть главы в:

Теплопередача  -> Основные законы переноса теплоты

Теплопередача  -> Основные законы переноса теплоты

Теплотехника  -> Основные законы переноса теплоты



ПОИСК



Законы переноса

Законы переноса теплоты

Основные законы

Основные законы переноса теплоты и массы

Основные законы переноса теплоты и массы вещества в коллоидных капиллярнопористых телах

Переносье

ТЕПЛОМАССООБМЕН Основные понятия и законы переноса теплоты и вещества

Теплота переноса

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте