Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовые эффекты в оптике

Квантовые эффекты в оптике 251  [c.251]

Сильным толчком к развитию квантовой оптики послужило явление резонансной флюоресценции. Свет, излучённый атомом, который управляется классическим монохроматическим электромагнитным полем, проявляет интересные квантовые эффекты в спектре и статистике фотонов. Здесь мы кратко рассмотрим этот краеугольный камень квантовой оптики.  [c.17]


Отметим, что те процессы в оптике, в которых поведение многочастичных систем излучателей существенно обусловлено их коллективным взаимодействием друг с другом, могут приводить к разнообразным новым эффектам. Например, кооперативный характер системы излучателей, взаимодействующих через поле излучения, обуславливает возможность таких режимов высвечивания, которые принципиально отличаются от спонтанного или вынужденного излучения, и может приводить к изменениям спектроскопических характеристик вещества. Такие явления оказывают существенное влияние на работу приборов квантовой электроники.  [c.94]

До недавнего времени источники света, которыми располагала оптика, позволяли получать световые пучки лишь слабой интенсивности с максимальными электрическими полями 0,1—10 В/см (см. задачу к этому параграфу). Нелинейные эффекты (за редкими исключениями) в этих случаях совсем незаметны. Случай сильных электрических полей в оптике считался чисто умозрительным и долгое время не исследовался. Начиная с 1960 г. — года изобре- тения оптических квантовых генераторов лазеров) — положение изменилось. Эти источники света позволяют получать световые волны, в которых электрические поля достигают 10 —10 В/см. Такие поля уже не могут считаться пренебрежимо малыми по сравнению с внутриатомными и внутримолекулярными полями. В них наблюдаются качественно новые нелинейные явления и притом не как малые поправки к линейным эффектам , а как явления крупного масштаба, получившие уже важные практические применения. О нелинейной оптике мы будем говорить в главе XI. Во всех остальных главах излагается линейная оптика.  [c.40]

Эта монография основана на лекциях, подготовленных для курса квантовой электроники в Гарвардском университете весной 1963 г. и для летней школы в Ле-зуш в 1964 г. Нелинейная оптика — еще совсем молодая область физики, предметом которой является изучение эффектов, возникающих при очень высоких интенсивностях света, достижимых в лазерных пучках. Нелинейная оптика — одна из наиболее интересных областей исследования, ставших доступными после разработки мощных лазеров.  [c.31]

Следует отметить, что как при классическом, так и квантовом описании нелинейных оптических явлений нужно с большой осторожностью пользоваться фундаментальным принципом суперпозиции, справедливость которого в изложении линейной оптики не подвергалась сомнению. При распространении света в нелинейной среде, одна мощная волна, встречаясь с другой волной, может воздействовать на нее, что и приводит к нарушению принципа суперпозиции. Постановка таких опытов в вакууме невозможна —. эффект взаимодействия световых пучков (рассеяние света на свете) во много раз меньше чувствительности любой современной аппаратуры.  [c.171]


Благодаря этому совершенно новые экспериментальные средства получила в свое распоряжение нелинейная оптика. В поле сфокусированных фемтосекундных импульсов могут быть получены интенсивности 10"—IQi Вт/см и, следовательно, напряженности светового поля достигают здесь 10 В/см. Речь идет, таким образом, о полях, превышаюш,их внутриатомные ( а 10 В/см для атома водорода). В столь сильных полях на первый план выходят новые проблемы нелинейной электронной физики, становятся реальностью прямые эксперименты, имеюш,ие целью наблюдение эффектов, предсказываемых нелинейной квантовой электродинамикой (нелинейное рассеяние света на релятивистских электронах, рассеяние света на свете в вакууме и т. п.).  [c.10]

При рассмотрении этих явлений можно использовать аппарат геометрической оптики в некоторых случаях невозможно обойтись без привлечения волновой теории света к использованию электромагнитной теории света прибегают реже, главным образом в лазерной технике квантовая теория световых явлений широко применяется при изучении фотоэлектрического эффекта, а также в телевидении.  [c.5]

В гл. 7 мы видели, что при фазовой и частотной синхронизации мод появляются новые эффекты. Возникают, например, сверхкороткие импульсы, которые, однако, являются пока очень регулярными. В этой главе речь пойдет о том, какие еще типы поведения были обнаружены или могут ожидаться в лазере. Один из самых удивительных результатов — хаотическое лазерное излучение . Поиски этого нового типа поведения были обусловлены определенными аналогиями в динамике лазерного излучения и гидродинамике. К сожалению, термин хаос (или хаотическое излучение ) может иметь двоякий смысл, и во избежание недоразумений мы должны отметить это прежде всего. В традиционной оптике хаотическим иногда называют излучение тепловых, т. е. термически возбужденных, атомов. В этом случае никакой генерации нет. Атомы накачиваются лишь очень слабо. После возбуждения каждый атом спонтанно начинает испускать волновой цуг. Поскольку акты спонтанного испускания совершенно не коррелированы, создается полностью случайное световое поле. Ни скоростные уравнения, ни введенные выше полуклассические уравнения не позволяют адекватно описать спонтанное испускание. Тут необходимо чисто квантовое описание, и мы вернемся к этому вопросу в следующей главе. А пока что на.м нужно только помнить об одно.м важном обстоятельстве. Случайность, или хаотичность, излучения здесь создается флуктуациями, обусловленными квантовой природой спонтанного испускания.  [c.204]

После создания мощных квантовых генераторов на оптических частотах (лазеров) возникла и в последние годы бурно развивается самостоятельная область исследований — нелинейная оптика. Понятие нелинейная оптика охватывает все явления в области высоких (оптических) частот, связанные с нелинейностью материальных уравнений в системе уравнений Максвелла. Большой интерес к этому разделу физики объясняется многими причинами. Нелинейная оптика создала новые возможности для изучения поведения ядер, атомов, молекул и твердых тел в электрических полях высокой напряженности. Кроме того, были найдены новые применения теории излучения и сформулированы законы распространения электромагнитных волн в нелинейных средах. Лазеры нашли необычайно широкие применения в самых различных областях науки и техники. При помощи нелинейных оптических эффектов можно получить новую информацию об отдельных атомах и молекулах и об их взаимодействии в плотных средах. На основании различных нелинейных оптических эффектов удалось создать новые когерентные источники света высокой интенсивности, частично с перестраиваемыми частотами. Кроме того, методы нелинейной оптики могут служить основой для развития других нелинейных теорий.  [c.8]

Эффекты линейной и нелинейной оптики обусловлены взаимным влиянием электромагнитного поля и вещества в газовой и конденсированной фазах. При квантовом описании это влияние учитывается при помощи члена взаимодействия в полном гамильтониане системы в 2.1 представлены соответствующие выражения как для полуклассического, так и для полностью квантового рассмотрения. Если член взаимодействия задан, то последовательное применение квантового формализма позволяет в принципе точно представить и рассчитать величины, имеющие физический смысл плотности излучения, вероятности переходов и соответствующие им скорости изменения населенностей. Однако затрата труда для необходимых расчетов должна находиться в разумных пределах. Поэтому оказывается целесообразным заранее учесть в основных уравнениях те или иные особенности изучаемого эффекта, не допуская при этом по возможности снижения прогнозирующей способности получаемых решений. Приведем типичные примеры приближенных методов такого рода учет отношения порядков величин длин взаимодействующих электромагнитных волн и линейных размеров рассматриваемой атомной системы, пренебрежение нерезонансными членами, упрощенное описание процессов без потерь и влияния диссипативных систем. Эти методы описываются в 2.2. Их применение дает возможность при существенном сокращении вычислительных трудностей сделать в явном виде наиболее важные физические выводы и установить относительно несложные корреляции между теоретическими результатами и экспериментальными дан-  [c.174]


Название этой книги кажется с первого взгляда противоречивым ведь термин нелинейная оптика ассоциируется с мощным лазерным излучением, содержащим огромное количество фотонов, и здесь, казалось бы, нет никакой необходимости учитывать фотонную структуру света. Действительно, подавляющая часть эффектов нелинейной (как, впрочем, и линейной) оптики прекрасно описывается полуклассической теорией излучения, в которой электромагнитное поле подчиняется классическим уравнениям Максвелла и лишь поведение вещества является квантовым.  [c.8]

С точки зрения прикладной нелинейной оптики эффект параметрического рассеяния является источником шумов, ограничивающих чувствительность параметрических усилителей и преобразователей частоты света и предельную стабильность параметрических генераторов света. Однако квантовые шумы могут, в принципе, найти полезное применение в метрологии света, стать основой квантовой фотометрии . Параметрический преобразователь частоты является одновременно абсолютным (не требующим калибровки) измерителем яркости света. Кроме того, одновременность и направленность вылета фотонов в парах при параметрическом рассеянии позволяет осуществить эталонный генератор фотонов, излучающий известное число фотонов.  [c.10]

Основное внимание здесь уделяется феноменологическому описанию реально наблюдаемых оптических явлений и связям между независимо изменяемыми величинами, в частности, связям типа закона Кирхгофа. Установление таких связей позволяет при модельных вычислениях ограничиться вынужденными эффектами и полуклассическими теориями. В книге рассматриваются лишь простейшие качественные микромодели, поясняющие смысл и порядки величин феноменологических параметров. Более детальные расчеты различных оптических микро-и макро-параметров можно найти в монографиях [8—17], вышедших за последние полтора десятилетия и посвященных взаимодействию света с веществом. В качестве общего вводного курса, охватывающего квантовую оптику и многофотонные процессы, можно рекомендовать книгу [18].  [c.11]

Нелинейная оптика — одна из наиболее интересных новых областей физики. Особое значение она приобрела после изобретения оптических квантовых генераторов — лазеров. В интенсивных полях современных лазеров возникают новые явления, а хорошо известные оптические явления приобретают новые черты. Все эти новые эффекты объединяет нелинейная зависимость их протекания от интенсивности света.  [c.4]

Основной причиной относительно медленного развития собственно нелинейной оптики до -изобретения лазеров было отсутствие подходящих источников света. Вместе с тем и здесь еще в годы, предшествовавшие бурному развитию квантовой электроники, был выполнен ряд важных исследований. В первую очередь к ним относятся исследования С. И. Вавилова и его сотрудников, целеустремленно занимавшихся поисками нелинейных оптических эффектов. С. И. Вавиловым было отмечено, что минимальные световые поля, при которых могут наблюдаться нелинейные эффекты, соответствуют резонансным условиям поэтому основное внимание было сосредоточено на наблюдении нелинейных эффектов вблизи линий поглощения. С. И. Вавилову и его сотрудникам принадлежат первые наблюдения эффекта просветления непрозрачной среды в поле интенсивной волны, эффекта, широко используемого теперь в лазерной технике. Чрезвычайно ясное и четкое рассмотрение причин появления оптических нелинейностей и качественной картины протекания нелинейных оптических эффектов содержится в монографии С. И. Вавилова Микроструктура  [c.11]

Нелинейные преобразования коренным образом изменяют статистику поля. Это хорошо известно в ста-тистич. радиофизике и в полной мере проявляется в оптике. Статнстич. свойства сформированного в установившемся режиме лазерного излучения радикально отличаются от свойств гауссовского теплового излучения. С существ, изменением статистики приходится сталкиваться при генерации оптич. гармоник и комбинац. частот, в разнообразных самовоздействиях. Многие из перечисленных эффектов имеют по существу классич. природу, квантовый характер света в них не проявляется. Тем больший интерес представляет формирование с помощью нелинейных преобразований новых квантовых состояний светового поля, новых макроскопич. квантовых состояний. Наиб, яркий пример — генерация т. н. сжатых состояний поля, возникающая при параметрич. взаимодействиях. В 60-х гг. они были исследованы для классич. полей, в 80-х гг. выяснено, что они могут реализоваться и для квантованных попей. При этом возникают нетривиальные возможности управления квантовыми флуктуациями светового поля.  [c.303]

Хорошо описывая распространение света в материальных средах, волновая О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов (фотоэффекта, фотохим. превращений молекул, закономерностей спектров оптических и пр.) и общие термодинамич. соображения о взаимодействии эл.-магн. поля с веществом привели к выводу, что элементарная система (атом, молекула) может испускать или поглощать энергию эл.-магн. поля лишь дискретными иорциями (квантами), пропорциональными частоте излучения V (см. Излучение). Поэтому световому эл.-магн. полю сопоставляется поток квантов света — фотонов, распространяющихся в вакууме со скоростью света. В простейшем случае энергия, теряемая или приобретаемая изолиров. квантовой системой при взаимодействии с оптич. излучением, равна энергии фотона йv, а в более сложном— сумме или разности энергий иеск. фотонов (см. Многофотонные процессы). Эффекты, в к-рых при взаимодействии света и вещества проявляются квантовые свойства элементарных систем, рассматриваются квантовой оптикой методами, развитыми в квантовой механике и квантовой электродинамике.  [c.419]


Методы получения сжатых состояний основываются на нелинейных радиофиз. и оптич. процессах. В оптике С, с. могут возникать в трёх- и четырёхчастотных параметрич. взаимодействиях (см. Взаимодействие световых волн), при генерации высших гармоник, в эффектах самовоздействия, комбинац. рассеянии, многофотонных процессах и т. п. Возможно также непосредств. создание высокостабильных лазерных источников излучения, в к-рых подавление квантовых флуктуаций осуществляется либо депрессией шумов накачки, либо введением отрицат. обратной связи.  [c.489]

Наконец, надо обратить внимание, что двухуровневый атом, как квантовая система, имеющая лишь два состояния, качественно аналогичен квантовой системе со спином 1/2. Поэтому имеются далеко идущие аналогии между двухуровневым атомом в резонансном поло и частицей со спином 1/2 в магнитном поле. Соответственно тот же круг вопросов детально изучался, наблюдался и использовался ранее, чем в оптике, в ядерном магнитном резонансе и электронном парамагнитном резонансе [5, 6]. Поэтому при исследовании нестационарных эффектов, возникающих при резонансном взаимодействии излучения с ансамблем двух-уроппевых атомов, широко пспользуется Эта аналогия.  [c.180]

Было бы, однако, неверным рассматривать пятимерную оптику только как один из вариантов единой теории поля ее основное содержание заключается скорее в геометризации основных понятий квантовой физики, поскольку в ней квантование обнаруживается как проявление периодической зависимости всех физических полей от пятой координаты действия. Поскольку само пятимерие оказывается квантовым эффектом, становятся понятными неудачи всех предшествующих попыток построения пятимерных единых теорий поля на базе одних лишь классических представлений без существенного привлечения квантовых понятий.  [c.9]

Возникшая как самостоятельный раздел оптики в начале 60-х годов (после появления лазеров) нелинейная оптика объединяет обширный круг явлений, обусловленных зависимостью параметров среды [коэффициенты поглощения k(v) и преломления n(v)] от интенсивности проходящего света. Оставим пока в стороне вопрос о нарушениях закона Бугера, связанных с у1сазанной зависимостью коэффициента поглощения k v) от напряженности электрического поля, и обратим внимание на свойства коэффициента преломления n(v), проявляющиеся в сильных полях. В таком изложении основ нелинейной оптики легче будет отделить классические эффекты (самофокусировка излучения, преобразование частоты света со всеми вытекающими отсюда последствиями) от квантовых, рассмотрение которых требует введения понятия фотона и других, более сложных представлений (см. 8.5).  [c.168]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

После изложенных соображений, касающихся существа предмета (квантовой оптики), обратимся к данному учебному пособию. Оно состоит из четырех частей 1. Развитие фотонных представлений. 2. Физика микрообъектов. 3. Квантовооптические явления. 4. Теоретические основы квантовой оптики. В первой части на основе ставших классическими работ Планка, Бора, Эйнштейна рассматриваются рождение и становление квантовой теории света, излагаются свойства фотона и фотонных ансамблей, демонстрируется переход от волновых представлений к квантовым. Во второй части анализируются некоторые принципиальные вопросы квантовой физики это позволяет объяснить интерференционные эффекты на корпускулярном языке. В третьей части приводятся необходимые сведения из физики твердого тела и затем обстоятельно рассматриваются три группы оптических явлений фотоэлектрические, люминесцентные, нелинейно-оптические эти явления иногда объединяют термином квантово-оптические . Вопросы, излагаемые в указанных трех частях пособия, составляют содержание раздела Квантовая природа света ,  [c.5]

НАКАЧКА в квантовой электронике — процесс создания неравновесного состояния вещества под воздействием эл.-магн. полей, при соударениях с заряженными или нейтральными частицами, при резком охлаждении предварительно нагретых газовых масс и т. п. Н. переводит вещество из состояния термоди-намич. равновесия в активное состояние (с инверсией населённостей), в к-ром оно может усиливать и генерировать эл.-магн. волны (см. Квантовая электроника, Лазер). Термин Н. применяется также в радиотехнике и оптике для обозначения процессов воздействия на элементы параметрич. систем. Н. наз. и воздействие циркулярно поляризованным оптич. излучением на систему парамагн. частиц, находящихся в магн. поле, с целью изменения разности населённостей магн. аее-мановских подуровней энергии (см. Зеемана эффект. Квантовые стандарты частоты. Квантовый магнитометр).  [c.239]

Разумеется, если — оо, то а оо, т. е. = О и = ехр(/х/2), что согласуется с выражением (3.3.8). В общем случаене равно нулю, что связано с частичным просачиванием энергии через темную область — явление, аналогичное эффекту туннелирования в квантовой механике. Величина этого просачивания зависит от параметра а, который служит мерой величины провала между двумя листами каустики г = иг = г а- Такое просачивание приводит к эффекту, называемому нарушенным полным отражением, который применяется в интегральной оптике для возбуждения волн в тонкопленочных волно-  [c.164]


Вполне закономерным является тот факт, что относительная слабость и сила электронных и оптических методов прослеживаются тем или, иным путем уже в самих основах физики междуэлектронных или меледуфотонных взаимодействий. По этому поводу заметим, что между электронами существует сильное взаимодействие, в то время как между фотонами — слабое. Отсюда следует, что электроны хорошо подходят для использования в переключающих операциях, столь важных в вычислениях, а фотоны хороши для осуществления связи между переключателями, создавая связи, свободные от вредных эффектов взаимодействия, создающих перекрестные наводки и емкостную паразитную нагрузку. Однако соглашаться с такими утверждениями было бы преждевременно вследствие существования квантовых потерь, сопровождающих как преобразование электрона в фотон, так и фотона в электрон. Исследования и разработка направлены на поиск путей замены длинных внут-рикомпьютерных соединений оптическими каналами связи, поскольку именно длинные соединения создают для электронных устройств жесткие проблемы с выделением мощности, быстродействием и занимаемым объемом для электронных устройств [26]. Это, естественно, слишком далеко от реализации оптикой всех ее возможных преимуществ в многопроцессорных архитектурах, пригодных для символьных вычислений.  [c.342]

Оптика движущихся тел является другой областью оптики, не затронутой в настоящей книге. Как и квантовая теория, она превратилась в широкий независимый раздел знания. Первым наблюденным явлением в этой области, отмеченным в 1728 г. Джеймсом Брэдли (1692—1762 гг.) [55], было явление аберрации неподвижных звезд , т. е. обнаружение небольшого различия их угловых положений, связанного с движением Земли относительно направления светового луча. Брэдли правильно понял это явление, связав его с конечностью скорости распространения света, в результате чего ему удалось определить последнюю. Мы уже упоминали и другие явления, относящиеся к оптике движущихся сред Френель первый заинтересовался увлечением света движущимися телами и показал, что световой эфир участвует в движении со скоростью, которая меньше скорости движущихся тат затем Физо экспериментально продемонстрировал такое частичное увлечение света в опытах с текущей водой. Христиан Допплер (1803—1853 гг.) [56] исследовал эффекты, связанные с двнже1П1ем источника свста или наблюдателя, и сформулировал хорошо известный принцип, названный его именем. До тех пор, пока теория упругого светового эфира считалась верной, а область исследований и точность измерений были достаточно ограниченными, идея Френеля о частичном увлечении света была способна объяснить все наблюдаемые явления. Электромагнитная же теории света встретилась з.цесь с трудностями фундаментального характера. Герц первый попытался обобщить уравнения Макс-ветла на случай движущихся тел. Однако его формулы противоречили некоторым электромагнитным и оптическим измерениям. Огромную роль сыграла теория Гендрика Антона Лоренца (1853—1928 гг.), который предположил, что эфир в состоянии абсолютного покоя является носителем электромагнитного поля, и вывел свойства материальных тел из взаимодействия элементарных электрических частиц — электронов. Е.му удалось показать, что фре-нелевские коэффициенты увлечения света можно получить из его теории и все известные в то время (1895 г.) явления можно объяснить на основании его гипотезы [57]. Однако в результате колоссального увеличения точности измерения оптических путей, достигнутого с помощью интерферометра Альберта Абрагама Майкельсона (1852—1931 гг.), возникла новая трудность оказалось невозможным обнаружить эфирный ветер , наличие которого следовало из теории неподвижного э ира [58, 59). Эта трудность была преодолена в 1905 г, Альберто.м Эйнштейном [60] в его специальной теории относительности.  [c.21]

Кроме явлений параметрического рассеяния и двухфотонного распада, наблюдавшихся уже в лазерную эпоху оптики, бифотоны должны излучаться также и при давно известном спонтанном комбинационном рассеянии света. Как будет показано в этой книге, антистоксовы фотоны при низких температурах рассеивающего вещества излучаются лишь в паре со стоксовыми. К этому эффекту непосредственно примыкает четырехфотонное или гиперпараметрическое рассеяние, оптичающееся от трехфотонного параметрического рассеяния участием в элементарном акте двух фотонов накачки. Мы рассмотрим также некоторые особенности эффекта рассеяния света на поляритонах, занимающего промежуточное положение между параметрическим рассеянием и комбинационным рассеянием на колебаниях ионов в решетке кристалла. Эти колебания сопровождаются колебаниями электромагнитного поля внутри кристалла. Поляритон — это квант макроскопического (усредненного) поля, т. е. фотон в среде, и поэтому рассеяние света на поляритонах, а также трех- и четырехфотонное параметрическое рассеяние, естественно называть рассеянием света на свете в веществе (последнее дополнение отличает его от рассеяния света на свете в вакууме — чрезвычайно слабом и еще не наблюдавшемся эффекте релятивистской квантовой электродинамики).  [c.9]

В настоящей книге делается попытка (по-видимому, первая) систематического описания перечисленных выше и некоторых близких к ним эффектов. Иначе книгу можно было бы назвать Введение в квантовую нелинейную оптику . Надо сказать, что в известных монографиях по квантовой оптике [1—4] основное внимание уделяется статистике свободного поля без учета нелинейности вещества, приводящей к корреляции разночастотных компонент поля. При рассмотрении статистики лазерного излучения [4—6] учитывается только один из нелинейных эффектов — эффект насыщения, стабилизирующий амплитуду колебаний. Краткое описание параметрического рассеяния имеется лишь в книге Ахманова и Чиркина [7], посвященной в основном преобразованию статистики света за счет вынужденных нелинейных эффектов.  [c.11]

Эти вынужденные эффекты можно описывать с помощью полу классической теории излучения. Квантовая оптика предсказы" вает новую, еще не обнаруженную особенность КР под малыми углами, при которых выполняется условие синхронизма (1). В 7.3 показывается, что при хГ антистоксовы фотоны излучаются только одновременно со стоксовыми. Этот эффект можно интерпретировать как резонансное ГПР.  [c.36]

Существенно, что набор возможных квантово-статистических состояний осциллятора гораздо богаче набора, допускаемого классической статистикой. Так, если когерентные состояния еще имеют похожие классические состояния (детерминированное колебание с определенными фазой и амплитудой), то -состояние не имеет в классике ничего похожего. Хотя мы еще не умеем пока приготавливать чистые iV-состояния поля (кроме вакуумного), экспериментальная квантовая оптика в принципе должна давать много неожиданных эффектов (например, недавно обнаруженный эффект антигруппировки [160]).  [c.97]

Интерпретация эффекта. Хотя эксперимент Брауна — Твисса иногда называют первым экспериментом квантовой оптики, по существу эффект корреляции интенсивностей — классическое явление, не требующее для его понимания квантования поля (в отличие от эффекта корреляции фотонов при двухфотонном распаде возбужденных состояний молекул или фотонов накачки — см. главы 5, 6). Его можно наблюдать и с помощью аналоговых корреляторов. Если Ьсо- кТ, то яркость ТИ определяется формулой Релея — Джинса, не содержащей Й. Далее, уменьшение относительной величины эффекта т при увеличении Удет является проявлением общей закономерности теории вероятностей относительные флуктуации суммы д независимых случайных величин падают при увеличении д.  [c.147]

Этот — четвертый — том общего курса физики посвящен физической оптике и является естественным продолжением предыдущего тома, в котором излагается учение об электрических и магнитных явлениях. Физическая оптика рассматривается в нем преимущественно с волновой (конечно, электромагнитной) точки зрения. Ропросы квантовой оптики затрагиваются лишь частично. Дается Представление о фотонах п процессе излучения как о квантовом переходе атомных систем из одного энергетического состояния в другое. Это необходимо для введения понятия индуцированного излучения и объяснения принципов работы лазеров. Однако систематическое изложение основ квантовой оптики, в той мере, в какой это возможно сделать в рамках общей физики, а также относящихся сюда квантовых явлений (фотоэффект, эффект Комптона, спектральные закономерности, люминесценция, эффект Зеемана, эффект Штарка и пр.), предполагается дать в пятом томе, где будет излагаться атомная физика в широком смысле эюго слова.  [c.7]


Смотреть страницы где упоминается термин Квантовые эффекты в оптике : [c.172]    [c.174]    [c.326]    [c.465]    [c.65]    [c.189]    [c.449]    [c.431]    [c.528]    [c.43]    [c.5]    [c.56]    [c.340]   
Смотреть главы в:

Основы оптики  -> Квантовые эффекты в оптике



ПОИСК



Квантовая оптика

Квантовые эффекты

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте