Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

АНАЛИЗ УСТОЙЧИВОСТИ УПРУГИХ ТЕЛ

АНАЛИЗ УСТОЙЧИВОСТИ УПРУГИХ ТЕЛ  [c.393]

Анализ устойчивости упругих тел  [c.396]

Критерий подобия (7.8) пригоден для исследования устойчивости любых упругих тел подобной геометрической формы. Однако для параметрического анализа выпучивания цилиндрических оболочек он должен быть дополнен определяющими критериями подобия, отражающими конкретные геометрические свойства тонкостенной конструкции. Эти критерии легко установить методом анализа размерностей.  [c.145]


В результате термодинамического анализа критерия устойчивости (9.23) установлено, что в стационарных неравномерных температурных полях процесс выпучивания практически не зависит от того, вызваны ли действующие напряжения тепловым расширением материала или внешними нагрузками. То есть критерий (9.23) для температурных задач теории упругости полностью совпадает с энергетическим условием (7.2), если под начальными напряжениями а / в момент потери устойчивости понимаются тепловые напряжения в упругом теле.  [c.211]

Аналитический период — это период формирования математического аппарата механики на базе математического анализа, новых достижений математики ХУШ-ХХ вв., установленных физических законов и принципов. Это время бурного расширения круга естественно-научных и технических задач, решаемых методами аналитической механики, и, как следствие, дифференциации механики в соответствии с физическими моделями (точка, система точек, абсолютно твердое тело, деформируемое тело, жидкость, газ, плазма, многофазная среда), конкретными задачами (небесная механика, баллистика, теория машин и механизмов, теории упругости и пластичности, сопротивление материалов, механика композиционных материалов, механика жидкости и газа, теория управления движением,...) и особенностями их математической постановки (расчет характеристик, оптимизация, анализ устойчивости,... ).  [c.10]

Аналогично, но с другими индексами, записываются модули сил, приложенных к площадкам dS и dS3. Полная сила, действующая на выделенный объем, зависит как от ориентации площадок, ограничивающих этот объем, так и от внутренних напряжений в той области, где находится рассматриваемый объем. Эти напряжения описываются совокупностью девяти величин стц (i, к = 1,2,3), которые составляют тензор напряжений. В упругих телах деформации пропорциональны соответствующим напряжениям. Таким образом, сложные деформации упругих тел описываются системой линейных дифференциальных уравнений, связывающих компоненты тензора деформаций и тензора напряжений. Материальные свойства изотропных сред представлены, как правило, коэффициентом Пуассона д. (1.4) и модулем всестороннего сжатия к (1.29). Анализ такой системы уравнений позволяет не только рассчитать деформацию тел, но и ответить на вопрос, устойчивы эти деформации или нет.  [c.22]


Анализ конкретных задач о трещинах в реальном нелинейно-упругом теле, напряженное состояние которого зависит лишь от его деформации (не зависит от поворотов), провести аналитическими средствами довольно трудно. (Решена плоская задача при условии сильного начального растяжения тела [119].) Однако выводы о концентрации деформаций (см. 3.3), о связи между раскрытием трещины и напряжениями на ее продолжении, а также о потоке энергии (см. 3.4) можно сделать, основываясь на геометрически точных соотношениях и не привлекая конкретных уравнений состояния. Достаточным является введение довольно естественных предположений общего характера, например об устойчивости материала. Оказывается, что неограниченность деформаций у края трещины не является следствием линеаризации. Она сохраняется и при точной постановке задачи. Характер особенности может измениться, но поток энергии сохраняется - линейная теория определяет его правильно.  [c.69]

Для иллюстрации рассмотрим задачу, связанную с анализом пространственной устойчивости колебаний амортизированного объекта, представляющего собой твердое тело, подвешенное на симметрично расположенных упругих амортизаторах (пружинах) [4, 8]. Уравнения движения такого объекта по форме будут совпадать с уравнениями (3). Выражения для функций Vi, Wi приведены в работе [8], где рассматривался случай, когда внешняя периодическая сила sin Ш приложена к центру массы тела и при его колебаниях сохраняла неизменные направления (вдоль оси Ог).  [c.278]

В двух предыдущих разделах ( 10.1, 10.2) рассматривались частные вопросы моделирования процессов разрушения применительно к циклическому нагружению конструкций. Ниже дается анализ моделирования равновесных состояний и кинетики процесса разрушения упругих и упруго пластических тел на основе общих методов анализа размерностей. При исследовании движения трещины учитывается вязкость материала и динамические характеристики процесса. Обсуждаются вопросы подобия при моделировании устойчивости равновесных трещин. Явления масштабного эффекта, связанные с нарушением условий статистической тождественности свойств материалов, существенные при моделировании абсолютных характеристик прочности, здесь не рассматриваются.  [c.232]

Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

В настоящее время для анализа устойчивости квазистати-ческого подрастания трещины обычно используют концепцию Уд-кривых и модуля разрыва [33, 219, 339, 426]. Суть /д-подхода заключается в допущении, что процесс разрушения, происходящий у вершины субкритически развивающейся трещины, контролируется двумя параметрами приращением длины трещины AL и /-интегралом Черепанова—Райса, введенным для нелинейно-упругого тела. Иными словами, предполагается, что зависимость J (AL) однозначно определяет сопротивление субкри-тическому росту трещины независимо от вида приложенной нагрузки (при условии монотонного характера нагружения) и геометрии образца. В то же время во многих работах указывается на уязвимость этого подхода, в частности на неинвариант-ность /н-кривых к типу нагружения и геометрии образцов. Поэтому не случайно появление в последние годы большого количества работ, посвященных модификации /д-подхода путем введения различного вида энергетических интегралов [33, 276, 287, 288]. Наиболее значительные результаты получены при использовании интеграла Т [33, 287, 288]. В то же время методичес-  [c.253]


Некоторые задачи об устойчивости твердых и упругих тел с жидким наполнением // Тр. Симпозиума по механике сплошной среды и родственным проблемам анализа. Т. 1. Тбилиси Мецниереба. С.214-225.  [c.291]

В случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами (волокнами конечных размеров в продольном направлении), взаимодействие между соседними волокнами может реализоваться как в плоскости поперечного сечения (между соседними параллельными волокнами), так и в продольном направлении (между соседними волокнами в направлении действия сжимающих напряжений). Исследование таких проблем в рамках трехмерной линеаризированной теории устойчивости деформируемых тел существенно усложняется, так как в этом случае получаем неоднородное (двухмерное или трехмерное) докритическое состояние вполне очевидно, что в рассматриваемых задачах конкретные результаты можно получить лишь при помощи современных численных методов. При вышесказанном подходе рассматриваемая проблема начала разрабатываться лишь в последние два года. Так, в случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами, при малой концентрации наполнителя приходим к простейшей эталонной задаче об устойчивости одного короткого волокна (волокна конечных размеров в продольном направлении) в бесконечной матрице при сжатии па бесконечности усилиями постоянной интенсивности, направленными вдоль волокна. Заметим, что в случае одного короткого волокна также получаем задачу с неоднородным докри-тическим состоянием конкретные результаты даже в этой эталонной простейшей задаче, характерной для рассматриваемой проблемы, получаются с привлечением только численных методов. При вышеизложенной постановке в рамках плоской задачи при моделировании матрицы и волокна линейно-упругим сжимаемым телом ряд конкретных результатов изложен в [8, 9]. Настоящую статью можно рассматривать как продолжение исследований [8] для однонаправленных волокнистых композитных материалов, армированных короткими волокнами, применительно к материалам с малой концентрацией наполнителя, когда можно выделить два соседних волокна (вдоль направления действия сжимающих напряжений), для которых (в силу близкого их размещения) необходимо учитывать взаимодействие двух волокон при потере устойчивости. Исследование проводится также в рамках плоской задачи при моделировании матрицы и волокон линейно-упругим сжимаемым телом при этом приводится сравнительно краткая информация о применяемом численном методе решения задач и его реализации, поскольку более подробно указанные вопросы могут быть изложены в публикации в другом издании. Основное внимание в настоящей статье уделено анализу полученных закономерностей о взаимовлиянии двух коротких волокон в матрице при потере устойчивости  [c.332]

До сих пор в анализе динамики рассматривалось только движение самого несущего винта. Движение вала винта также является важным фактором как с точки зрения проблем устойчивости и управляемости вертолета, в которых рассматриваются степени свободы фюзеляжа как жесткого тела, так и в отношении проблем я роупругости, включающих связанное движение упругого фюзеляжа и винта. На рис. 9.10 показаны линейные и угловые движения втулки. Возмущенное линейное смещение втулки относительно установившейся траектории полета обозначается перемещениями Лвт, Увт и Zbt] возмущенное угловое смещение — углами ах, ау и аг. В данном случае используется инерциальная система координат, которая остается неподвижной в пространстве при возмущенном движении втулки.  [c.400]

Обрабатываемая деталь для сравнительных расчетов отдельных конструктивных вариантов берется жесткой. При обработке в центрах она рассматривается как жесткое тело на упругих опорах. На основании анализа форм колебаний, полученных при обработке в центрах, можно пренебречь смещениями детали, упорных центров и бабок по оси х. Из перемещений задней бабки можно выбрать три вида наиболее значительных перемещений смещение по оси у и поворот около осей х и г. Формы колебаний шпинделей с значительными сосредоточенными массами качественно близки к статическим формам изгиба под действием сил резания. Колебания передней (шпиндельной) бабки довольно сложны, но наибольший интерес представляют ее поворотные колебания около оси 2, хотя они по амплитуде значительно меньше амплитуды заготовки, особенно при обработке в центрах. Существуют условия, особенно при нежестких шпинделях или шпиндельных бабках, когда на устойчивость и колебания при резании влияет крутильная система главного привода. Она рассматривается как ряд последовательно расположенных дисков на вало-проводе.  [c.178]

Эти теоремы, определяющие необходимое (теорема Койтера) и достаточное (теорема Мелана) условия, при которых упругопластическое тело после конечной пластической деформации приспособливается к чисто упругому поведению, основаны на следующих идеализациях пренебрегают возможностями потери устойчивости, разрушения, эффектом Баушингера и упрочнением (разупрочнением). Влияние всех этих факторов (за исключением упрочнения) будет понижать допускаемую нагрузку. Таким образом, предельные значения нагрузки, определенные путем математического анализа приспособляемости, могут несколько завышать действительные предельные значения нагрузки.  [c.121]


Смотреть страницы где упоминается термин АНАЛИЗ УСТОЙЧИВОСТИ УПРУГИХ ТЕЛ : [c.393]    [c.394]    [c.33]    [c.134]    [c.5]    [c.333]   
Смотреть главы в:

Метод конечных элементов Основы  -> АНАЛИЗ УСТОЙЧИВОСТИ УПРУГИХ ТЕЛ



ПОИСК



Анализ устойчивости

Анализ устойчивости СП с упругими деформациями в параллельной кинематической цепи

Анализ устойчивости системы с учетом сосредоточенных упругостей

Р а в в а, О. И. Д р а ч е в. К анализу устойчивости упругих систем рукавных станков для шлифования и полирования облицовочного камня

Устойчивость упругих тел



© 2025 Mash-xxl.info Реклама на сайте