Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовый разряд дуговой

Одним из наиболее распространенных ионных лазеров является аргоновый лазер. Условия его возбуждения характерны для ионных лазеров, в которых верхний лазерный уровень заселяется благодаря двум последовательным столкновениям атомов аргона с электронами в электрическом разряде. При первом столкновении образуются ионы из нейтральных атомов, а при втором происходит возбуждение этих ионов, т. е. накачка представляет собой двухступенчатый процесс. Для того чтобы ионный лазер действовал эффективно, плазма газового разряда должна быть высокоионизированной. Такая плазма создается при использовании сильноточного дугового разряда. Газоразрядная трубка имеет малый диаметр (1—10 мм), что позволяет получать большие плотности тока в разряде (порядка сотен ампер на 1 см ).  [c.290]


Для работы с иконоскопом желательно использовать источники, интенсивно излучающие, главным образом, в ближней инфракрасной области (например лампы газового разряда, наполненные криптоном или ксеноном, цезиевые дуговые лампы и т. д.). Характер изображения будет напоминать инфракрасные фотографии, что, впрочем, является не всегда приемлемым.  [c.368]

В лазерных излучателях используются приборы с тлеющим и дуговым газовым разрядом. Эти разряды. различаются величиной катодного падения напряжения. Если это напряжение больше ионизационного потен- циала газа, то имеет место тлеющий разряд, в против яом случае — дуговой разряд (при токе, равном долям ампера и выше).  [c.18]

Источники электропитания дугового газового разряда  [c.27]

Дуговой разряд в среде газов используется в лампах оптической накачки твердотельных лазеров и при разработке ионных газовых лазеров. Дуговой разряд характеризуется большими плотностями ток-а (1000 А/см ), сравнительно низкими значениями напряжения между электродами газоразрядной трубки (100—400 В), высокой степенью ионизации плазмы газового разряда. В рабочем диапазоне вольт-амперной характеристики наблюдается слабая зависимость напряжения от тока разряда, что определяет способ управления дуговым разрядом — регулированием величины разрядного тока. При этом мощность дугового разряда изменяется линейно. Предельная величина тока разряда ограничивается конструктивными и технологическими возможностями создания разрядной трубки, выдерживающей большие на- грузки.  [c.27]

Для повышения устойчивости газового разряда последовательно с трубкой. включается балластный резистор RI, а уменьшение пульсаций тока достигается установкой дросселя Др. Последний служит также для ликвидации возникающих в лампе флюктуаций тока до того момента, когда источник питания в силу своего быстродействия не восстановит прежнее значение параметров дугового разряда. Цепочка из резистора и диода,  [c.28]

Электрическая накачка импульсных газовых лазеров осуществляется напряжением с амплитудой от единиц до десятков киловольт при длительности от долей до единиц микросекунд. Длительность импульса накачки может определяться выбранным режимом импульсного тазового разряда (тлеющим, дуговым). Фронт и спад импульса электрической накачки стремятся сделать воз- можно более короткими при получении генерации в ус--ловиях нестационарной плазмы газового разряда.  [c.32]


Электрическая дуга. В дуговых печах источником тепловой энергии является электрическая дуга, представляющая собой разновидность газового разряда.  [c.250]

Процесс образования электронов и ионов называется ионизацией, а газ, содержащий электроны и ионы, ионизированным. При прохождении электрического тока через газовый промежуток положительные ионы стремятся к отрицательному полюсу (катоду), а отрицательные — к положительному (аноду). При движении некоторые ионы и электроны, сталкиваясь между собой, нейтрализуются и образуют нейтральные атомы и молекулы. Процесс образования нейтральных атомов и молекул называется рекомбинацией. При рекомбинации образуется энергия в форме электромагнитных излучений. В электрическом газовом разряде при бомбардировке поверхности отрицательного полюса электрода (катода) ионами, воздействии на эту поверхность электромагнитных излучений, влиянии высокой температуры и приложении электрического поля с поверхности отрицательного полюса (катода) во внешнюю среду выходят электроны. Излучение с поверхности отрицательного полюса электронов во внешнюю среду называется электронной эмиссией. Таким образом, при дуговом разряде происходит образование ионов — ионизация газов с обратимым процессом — рекомбинацией и имеет место электронная эмиссия.  [c.28]

Электрическая сварочная дуга представляет собой мощный электрический разряд, протекающий в газовой среде. Дуговой разряд характеризуется двумя основными особенностями выделением значительного количества тепла и сильным световым эффектом. Температура обычной сварочной дуги около 6000 °С.  [c.58]

Газовый разряд может быть неустойчивым (например, искровым) и устойчивым. Последний можно классифицировать по трем видам темный тлеющий, в том числе коронный дуговой разряд. Например, если в длинной цилиндрической стеклянной трубке, заполненной газом при давлении 1 мм рт. ст., медленно повышать разность потенциалов между катодом и анодом, то можно обнаружить ток, начиная с 10 —10- а. Он появляется вследствие ионизации в газе, на стенках и электродах, вызываемой космическими лучами. С помощью ограничивающего сопротивления можно получить все три формы разряда (рис. 2.6). Темный разряд переходит в тлеющий, который отличается уже заметным свечением, используемым в газосветных трубках. При этом катодное падение /к 100 в / до 1—10 а/см . Температура газа в тлеющем разряде практически не повышается. Затем, через аномальный тлеющий разряд происходит переход к мощному дуговому разряду. Характерными его чертами являются малая величина (порядка 10 в вместо сотен для тлеющего), большие плотности тока, составляющие тысячи а см , высокая температура газа в проводящем канале, при 1 атм 7=5000- 50 000° К, высокие концентрации частиц в катодной области.  [c.42]

При сварке в среде СО2 металл сварочной ванны и электродной проволоки взаимодействует только с газовой средой дугового разряда, вызывающей окисление и испарение легирующих элементов под действием высокой температуры. Поэтому потери элементов из электродной про-  [c.373]

ТИРАТРОН — управляемый ионный выпрямительный прибор с накаливаемым катодом и несамостоятельным дуговым разрядом. В Т. при помощи одного или нескольких управляющих электродов осуществляется управление моментом возникновения разряда. По принципу действия Т. отличаются от вакуумных приборов тем, что после возникновения газового разряда между катодом и анодом напряжение на сетке перестает управлять анодным током. Но, изменяя величину отрицательного напряжения на сетке, можно управлять моментом зажигания Т. Таким образом, сетка в Т. служит только для включения анодного тока. Т. применяются в качестве управляемых вентилей в реле, генераторах электрических импульсов и т. д.  [c.161]

Дуговой разряд. Если в схеме газового разряда (рис. 28) увеличить ток при помощи регулирующего реостата, то после достижения некоторого предельного значения картина разряда резко изменится вспыхнет ослепительно яркое пламя и загорится дуговой разряд—высшая (как уже было сказано) форма газового разряда. Дальнейшее увеличение тока, не меняя характера разряда, лишь увеличивает его размеры и свечение. Устойчив дуговой разряд в чрезвычайно широких пределах изменения тока. Характерный дуговой разряд с четко выраженными областями можно наблюдать уже при постоянном токе 1а. В сварочных дугах применяют токи  [c.63]


Описанное уменьшение Q Q( в области дугового разряда не нашло своего отражения на наших графиках, так как этот тип газового разряда не является предметом нашего рассмотрения.  [c.209]

Под электрическим разрядом понимают прохождение тока через газовую среду. Существует несколько форм или видов электрического разряда дуговой, тлеющий, искровой и др. Один разряд отличается от другого длительностью, напряжением, сил<й тока и др.  [c.15]

Разновидностями газового разряда являются тлеющий, искровой, дуговой, коронный.  [c.125]

Ручная дуговая сварка за многие годы ее существования претерпела множество качественных скачков в своем развитии. Эти скачки каждый раз определялись введением в процесс какой-то новой переменной. Такими переменными были качественное покрытие, флюсы, газовая среда и, наконец, сжатие дугового разряда, дугового пространства. Следует подчеркнуть, что последняя переменная по природе своей совсем не металлургическая, но она и дала выдающийся скачок развития совершенно особых плазменных процессов сварки и резки.  [c.83]

Все виды Э. р, в г. исследуются и применяются при возбуждении газовых лазеров. Дуговой или ВЧ разряды явл. осн. рабочими процессами в плазмотронах. На применении искрового разряда основаны прецизионные методы электроискровой обработки. При фокусировке лазерного светового излучения происходит пробой воздуха в фокусе и возникает безэлектродный разряд (подобный ВЧ разряду и искре), наз, лазерной искрой. Мощные сильноточные разряды в водороде служили первыми шагами на пути к управляемому термоядерному синтезу.  [c.864]

В устойчивом дуговом разряде температура электродов часто приближается к точке кипения электродного материала и его пары могут добавляться к газовой среде. Поэтому вблизи электродов дуга будет гореть в смеси газов и паров и давление здесь может быть значительно выше, чем в столбе.  [c.69]

При электрошлаковой сварке газовая атмосфера отсутствует и все металлургические процессы идут на границе металл — шлак, причем влияние электрохимических процессов в этом случае сильнее, чем при автоматической сварке под флюсом. При дуговой сварке через шлак проходит, шунтируя дуговой разряд, лишь 12% тока, а при электрошлаковом процессе весь ток идет через шлак.  [c.378]

Функциональную основу Г. п., как правило, составляет газовый разряд (дуговой, тлеющий, высокочастотный, СВЧ-разряд, лазерный, пучково-плазменный). Для генерации плазмы пока ещё редко используется ионизация рабочего вещества резонансным излучением, но в будущем, в связи с развитие.м лазеров, такие Г. п. могут получить значит, распространение. Г. п., работающие на газах при давлениях, сравнимых с атмосферным, обычно наз. плазмотрона,ии. Г. п., работающие на газах низких давлений, как правило, входят в состав более крупных устройств, напр, двухступенчатых плазменных ускорителей или ионных источников. Если в плазмотронах одной из основных конструктивных трудностей является защита стенок газоразрядного канала от больших тепловых потоков, то в Г. п. пизкого давления возникает проблема предотвращения гибели за ряж. частиц на стенках. С этим борются, используя экранировку стенок магн. и электрич. полями (см. Ионный источник), а также совмещая ионизацию и ускорение в одном объёме, благодаря чему поток плазмы попадает преим. в выходное отверстие Г. п. (см. Ллаз-.пенные ускорители). В связи с задачами плазменной технологии большое внимание уделяется разработке Г. п., непосредственно генерирующих плазму из твёрдых веществ. Наиб, распространение для этих целей получили вакуумные дуги с холодным катодом. Воз-  [c.434]

По видам излучения И. с. разделяются на два класса 1) И. с. температурного, или калорического, излучения, в к-рых излучение света есть следствие нагревания светящегося тела до высокой темп-ры. В зависимости от рода излучающего тела этот класс И. с. может быть разделен на 3 группы а) И. с. черного излучения, б) И. с. серого излучения, в) И. с. избирательного (или селективного) излучения. Основой теории излучения И. с. этого класса являются законы излучения черного тела (законы Планка, Вина и закон Стефана-Больцмана, см. Излучение) и общим законом для всех трех групп, объединяющим излучения нечерных тел с черным излучением, — закон Кирхгофа. 2) И. с. люминесцирующего излучения, работающие на принципе одного из видов люминесценции, процесса, связанного с излучением света путем возбуждения атомов за счет какого-либо вида энергии, непосредственно воздействующего на вещество. Из различных видов люминесценции в И. с., используемых на практике, наиболее применима электролюминесценция (светящийся разряд в газах) кроме того в природе встречаются явления, связанные с хемилюминесценцией, или выделением лучистой энергии ва счет энергии химич. превращений (свечение медленного окисления — свечение живых организмов). Класс люминесцирующих И. с. является по преимуще ству классом И. с. холодно I о свечения. Повышение темп-ры, имеющее место при работе подобных И. с., служит побочным фактором, не участвующим активно п процессе излучения радиаций. В нек-рых случаях однако наряду с процессом люминесценции зыделение тепла при работе И. с. достигает таких размеров, что излучение может иметь смешанный характер к подобным И. с. например м. б. отнесены лампы с вольтовой дугой (см.), обладающие лю-минесцирующим свечением дуги и темп-рным излучением раскаленных электродов теория люминесцирующего свечения тесно связана с теорией строения атома и теорией спектров. Электролюминесцирующие И. с. могут быть разделены на группы в зависимости от рода газового разряда (дуговой, тлеющий, без-электродный) и в зависимости от характера излучающей среды (пары металлов, перманентный газ).  [c.242]


В люминесцирующих И. о. и. используется люминесценция газов или ТВ. тел (кристаллофосфо-ров), возбуждаемая электрич. полем, напр, при прохождении через них электрич. тока. Электрические разряды в газах используются в разнообразных газоразрядных И. о. п., к-рые различаются в зависимости от вида газового разряда (дуговой, искровой, тлеющий, безэлектродный), хар-ра излучающей среды (газы, пары металлов), режима работы (непрерывный, импульсный).  [c.236]

Газовый разряд может быть неустойчивым (например, искровым) и устойчивым. Последний можно классифицировать по внешнему виду темновой, тлеющий, в том числе коронный, и дуговой разряды. Например, если в длинной цилиндрической стеклянной трубке, заполненной газом при давлении около 100 Па, медленно повышать разность потенциалов между катодом и анодом, то приборы фиксируют наличие тока начиная с Ю ... 10 А. Он появляется вследствие ионизации в объеме газа, на стенках и электродах, вызываемой космическими лучами. С помощью ограничивающего сопротивления можно получить все три формы разряда (рис. 2.5). Темновой разряд переходит в тлеющий, который отличается уже заметным свечением, используемым в газосветных трубках. При этом катодное падение  [c.36]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]

В работе [45] представлены цветные структуры,, полученные вакуумным окислением различных материалов урановых и циркониевых листов, никеля (99,8%), меди, стали (25,13% Сг), циркониевониобиевых сплавов и т. д. Перед началом окисления в камере создают вакуум 10 мм рт. ст. Затем ее тщательно промывают аргоном и при давлении 8-10 мм рт. ст. производят газовый разряд при напряжении 5 кВ и плотности тока 0,2—0,5 мА/см . Аргоно-дуговую бомбардировку продолжают 3—5 мин. При катодном глубоком травлении ионный об-  [c.23]

СПЕКТРОСКОПИЯ — совокупность методов исследования строения вещества, основанных на резонансном поглощении радиоволн РАЗМАГНИЧИВАНИЕ — уменьшение остаточной намагниченности ферромагне1ика после снятия внешнего магнитного поля РАЗМЯГЧЕНИЕ — переход вещества из твердого состояния в жидкое при повышении температуры РАЗРЯД (безэлектродный вызывается либо током смещения, либо является индукционным током, а разрядный промежуток изолирован от электродов высокочастотный происходит в газе под действием электрического поля 1азовый — процесс прохождения электрического тока через газ дуговой — самостоятельный газовый разряд с большой плотностью тока, при котором основную роль в ионизации играют электроны, возникающие вследствие термоэлектронной эмиссии с разогретого самим разрядом катода, а газ в столбе дуги находится в состоянии плазмы при сравнительно небольшом напряжении между электродами)  [c.269]

ИОННЫЕ ПРИБОРЫ (газоразрядные приборы) — приборы, наполненные к.-л. инертным газом (Не, Ne, Аг, Кг, Хе), парами ртути или водородом, действие к-рых основано на прохождении электрич. тока через газоразрядную плазму, образующуюся в меж-электродном иространстве. Давление газов в И. п. составляет 10 -f-100) мм рт. ст. По тину газового разряда, зажигающегося в приборе и определяемого природой электронной эмиссии из катода, родом газа и его плотностью, питанием разряда, различают И. п, несамосто-ят. дугового разряда, самоетоят. дугового, тлеющего, искрового и коронного разрядов.  [c.203]

Рнс, 1. Вольт-амперна характеристика газовых разрядов АВ— весамостоятельный ра.зряд ВС—тёмный таунсендовский DE— нормальный тлеющий EF—аномальный тлеющий FG — переход в дугу G//—дуговой Е—нагрузочная прямая.  [c.509]

Классификация газовых разрядов. Среди стационарных самостоятельных разрядов в пост, поле наиб, важные и распространённые—тлеющий и дуговой. Они различаются механизмами катодной эмиссии, обеспечивающей возможность протекания пост, тока, поскольку осн. носителями тока являются электроны. В тлеющем и тёмном (таунсендовском) разрядах катод холодный. Электроны вырываются из него положит, ионами (и фотонами). В дуговом разряде катод разогревается сильным током и происходит термоэлектронная эмиссия. В резко неоднородных полях, усиленных около острий, проводов линий электропередачи, возникает коронный разряд, самостоятельный и слаботочный. Среди быстротечных сильноточных разрядов особенно важен искровой разряд. Он возникает обычно при 1 атм, d> 1—5 см и достаточно высоком напряжении, превышающем напряжение зажигания короны, если поле сильно неоднородное. Искровой пробой газа происходит в результате возникновения и быстрого развития тонкого плазменного какала от одного электрода к другому затем получается как бы короткое замыкание цепи высокопроводящим искровым каналом. Одна из форм искрового разряда—молния. В коронном и искровом разрядах катодная эмиссия особой роли не играет.  [c.510]

Применения. Газовые разряды применяют в газосветных приборах, в электронных диодах с газовым наполнением, тиратронах, ртутных выпрямителях (игнитронах), в качестве стабилизаторов напряжения в счётчиках Гейгера ядер-ных частиц, в антенных переключателях, озонаторах, маг-нитогидродинамшеских генераторах. Широко используются электродуговая сварка, электродуговые печи для плавки металлов, дуговые коммутаторы. Получили большое распространение генераторы плотной равновесной низкотемпературной плазмы с К, /)--1 атм—плазмотроны (дуговые, индукционные, СВЧ). В них продуванием холодного газа через соответствующий разряд получают плазменную струю. Тлеющий и ВЧЕ-разряды используют для создания активной среды в лазерах самой разл. мощности—от мВт до многих кВт, в плазмохимии. Эти и др. приложения, использование результатов исследований Э. р. в г. в технике высоких напряжений поставило физику газового разряда в ряд наук, к-рые служат фундаментом совр, техники.  [c.514]


Вакуумные ионпо-плазменные процессы нанесения покрытий характеризуются следующими основными этапами генерацией атомарного или молекулярного потока вещества, его ионизацией, ускорением и фокусировкой н, наконец, конденсацией на поверхности деталей или подложки. Для генерации потока вещества используются разогрев потоком электронов и различные формы газовых разрядов (тлеющий, дуговой с нерасходуемым термоэмис-  [c.153]

В маломощных ГРП наиболее просто можно зажечь разряд повышением напряжения 1/пит а выходе основного источника питания до значения t/np данного ГРП. Выполнение этого условия приводит к зажиганию разряда и установлению рабочего режима ГРП. Поскольку t/np значительно больше напряжения на ГРП в рабочем режиме Ups.6, то источник питания должен обладать падающей внешней характеристикой (иметь большое внутреннее сопротивление). Это НеОбХ-ОДИМО для того, чтобы после пробоя при 1/пит= пр на выходе источника питания установилось новое рабочее напряжение t/pa6= nHT при рабочем токе /раб через ГРП, соответствующем заданному виду газового разряда (тлеющему или дуговому).  [c.8]

Для инициирования зажигания дугового газового разряда используются различные схемы зажигания, рассмотренные в гл. I. Выбор схемы зажигания определяется в основном тактико-техническими требованиями и условиями эксплуатации. При отсутствии надлежащих специальных высоковольтных кабелей, разъемов и других радиокомпонентов, а также с целью уменьшения импульсных потерь и уровня помех устройства импульсного зажигания располагают, как правило, вне источника питания в непосредственной близости от излучателя.  [c.53]

Для получения спектров испускания двухато.мных и простых многоатомных молекул используются различные источники света (пламена, печи, электрические дуга, газоразрядные трубки и т.д.). Наиболее просты и удобны в работе различные типы газового разряда, которые подразделяются на плазму высокого и низкого давления. Их различие состоит в том, что в плазме высокого давления все частицы находятся в термодинамическом равновесии, а в плазме низкого давления (обычно давление газа ниже 1 — 10 мм рт. ст.) равновесия между нейтральными и заряженными частицами нет нет также равновесия между поступательной энергией частиц и энергией их колебания и вращения. К первому типу разряда относятся дуговой и искровой разряды, а ко второ-.му — тлеющий и высокочастотный разряд и разряд в полом катоде.  [c.133]

Наиболее удобно проследить возникновение тлеющего и дугового разрядов, пользуясь вольт-амнерной характеристикой газового разряда, которая изображена па рис. 189.  [c.251]

На стабилизацию газового разряда следует обратить особое внимание, так как от нее зависит нормальная работа ламп. Выше неоднократно указывалось на схемы включения в цепь тех или иных из газосветных ладтп. В каждой из такой схем было указано наличие балластного сопротивления, ограничивающего ток, текущий через ламну. Необходимость в тако.м сопротивлении обусловлена падающе вольт-амперпой характеристикой дугового, а в некоторых случаях и тлеющего разряда.  [c.276]

Очень распространены газоразрядные лампы, т. е. устройства, в которых оптическое излучение возникает в результате прохождения электрического тока через газы и пары. Различают несколько форм газового разряда тихий, тлеющий, дуговой и искровой. Тихий разряд, для которого характерна малая плотность тока ( 10 А/см ) и слабое свечение, редко используется в интерференционной технике. Тлеющий разряд характеризуется увеличенной плотностью тока ( 10 —10 А/см ) при малом давлении. Электрическое поле, создаваемоей положительным столбом этого разряда, незначительно. Поэтому оно не слишком влияет на уширение спектральных линий. Эти источники света выгодно применять в тех случаях, когда необходимо иметь узкие спектральные линии и возможны большие экспозиции.  [c.25]

При сваркг в среде защитных газов используют электрическую дугу, представляющую собой длительный и мощный разряд электричества в газовой среде. Дуговой разряд сопровождается выделгнием большого количества тепла и света. Дуга является концентрированным источником тепла. Напряжение дуги зависит от ее длины, величины тока, материала электродов и рода газа, в котором протекает процесс. Зависимость напряжгния дуги от тока, выраженная графически, называется статической или вольтамперной характеристикой дуги. При ручной дуговой сварке и сварке под флюсом со средними режимами, когда применяют сравнительно небольшие плотности тока (20—60 а/мм ), статическая характеристика имеет вид падающей кривой б и 6i (рис. 3). Напряжение на дуге резко падает с возрастанием тока до  [c.10]


Смотреть страницы где упоминается термин Газовый разряд дуговой : [c.552]    [c.114]    [c.151]    [c.29]    [c.70]    [c.31]    [c.427]    [c.428]    [c.34]    [c.151]   
Теория сварочных процессов (1988) -- [ c.34 ]



ПОИСК



Газовый разряд

Источники электропитания дугового газового разряда

Разряд дуговой



© 2025 Mash-xxl.info Реклама на сайте