Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическая накачка. Твердотельные лазеры

Дуговой разряд в среде газов используется в лампах оптической накачки твердотельных лазеров и при разработке ионных газовых лазеров. Дуговой разряд характеризуется большими плотностями ток-а (1000 А/см ), сравнительно низкими значениями напряжения между электродами газоразрядной трубки (100—400 В), высокой степенью ионизации плазмы газового разряда. В рабочем диапазоне вольт-амперной характеристики наблюдается слабая зависимость напряжения от тока разряда, что определяет способ управления дуговым разрядом — регулированием величины разрядного тока. При этом мощность дугового разряда изменяется линейно. Предельная величина тока разряда ограничивается конструктивными и технологическими возможностями создания разрядной трубки, выдерживающей большие на- грузки.  [c.27]


Оптическая накачка. Твердотельные лазеры 21  [c.21]

Твердотельные лазеры вопросы практической реализации оптической накачки, рабочие схемы лазеров ). На рис. 1.11, а показано схематически, как можно реализовать оптическую накачку твердотельного лазера. Здесь 1 — активный элемент, 2 — источник излучения накачки (например, газоразрядная лампа-вспышка), 3 — отражатель для фокусировки излучения накачки на активный элемент,  [c.26]

Оптическая накачка. Твердотельные Лазеры 27  [c.27]

Твердотельные и жидкостные лазеры. Активной средой твердотельных лазеров являются кристаллы и стекла, содержащие в качестве активных примесей ионы переходных металлов (например, Сг), редкоземельных элементов (например, N l), актинидов (например, U). К ним предъявляются требования высокой прозрачности, однородности свойств, механической прочности и стойкости к излучению. Основным способом энергетической накачки является оптический. В качестве примера приведем лазеры на рубине и на алюмо-иттриевом гранате.  [c.341]

Возможно подразделение лазеров на группы в зависимости от способов накачки. Различают оптическую накачку — при облучении светом определенной частоты — и электрическую — при прохождении тока через рабочее вещество. В последнее время большое внимание уделяется химической накачке, когда инверсия возникает при той или иной химической реакции. В некоторых типах лазеров, например газовых, можно встретить ОКГ как с оптической и электрической, так и с химической накачкой. Полупроводниковые ОКГ могут иметь как электрическую, так и оптическую накачку. С другой стороны, в твердотельных лазерах электрическая накачка не осуществляется, так как используемые твердые тела для ОКГ являются диэлектриками.  [c.17]

Обычные источники света излучают в широком интервале частот, поэтому в качестве источников накачки применяются лазеры, например твердотельный лазер на рубине. Проникновение света в полупроводник происходит на глубину, значительно большую, чем проникновение электронного пучка, что приводит к излучению больших мощностей одновременно до 50% возрастает к. п. д. Однако общий к. п. д. всей системы из двух лазеров оказывается низким вследствие малого к. п. д. твердотельного лазера, поэтому полупроводниковые квантовые генераторы с оптической накачкой широкого применения не получили.  [c.63]


Конструкция лазера отличается от твердотельных ОКГ тем, что в резонатор вместо стеклянного стержня помещается кювета с раствором. Инверсия, как и в твердотельном ОКГ, осуществляется при помощи оптической накачки от импульсных ламп. Жидкостные лазеры такого типа могут работать как в режиме свободной генерации, так и в режимах модулированной добротности и синхронизации мод.  [c.64]

ТВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ С ОПТИЧЕСКОЙ НАКАЧКОЙ  [c.168]

Обычно под твердотельными лазерами подразумевают достаточно представительный класс квантовых генераторов, инверсная заселенность в твердом рабочем теле которых создается путем оптической накачки. При этом за пределами этого класса лазеров остаются полупроводниковые приборы, использующие электронный или инжекционный способы возбуждения.  [c.168]

Рис. 5.1. Устройство твердотельных лазеров с оптической накачкой Рис. 5.1. Устройство <a href="/info/7269">твердотельных лазеров</a> с оптической накачкой
В твердотельных лазерах (рабочее тело -рубин, стекло с неодимом и др.) накачка, как правило, производится специальными источниками излучения 3, направленными на рабочее тело I отражателем 4 (рис. 5.17). Для направления излучения и усиления генерации активный элемент помещают между двумя точно установленными зеркалами-отражателями - резонаторами 2, один из которых в целях вывода излучения из лазера делается полупрозрачным. Вышедшее из лазера излучение фокусируется специальной оптической системой 5 и в виде луча направляется на обрабатываемый объект б.  [c.244]

Из приведенного выше рассмотрения вполне разумно ожидать, что лазеры, в которых используются красители, могут генерировать на длинах волн в области спектра флуоресценции. Действительно, быстрая безызлучательная релаксация внутри возбужденного синглетного состояния 5i приводит к очень эффективному заселению верхнего лазерного уровня, а быстрая релаксация внутри основного состояния — к эффективному обеднению нижнего лазерного уровня. Следует также заметить, что в области длин волн флуоресценции раствор красителя достаточно прозрачен (т. е. соответствующее сеченне поглощения а невелико см., например, рнс. 6.29). Фактически же первый лазер на красителях был запущен поздно (в 1966 г.) [24, 25] относительно времени, с которого началось общее развитие лазерных устройств. Рассмотрим некоторые причины этого. Во-первых, это очень короткое время жизни т состояния 5i, поскольку мощность накачки обратно пропорциональна т. Хотя такой недостаток частично компенсируется большой величиной сечения перехода, произведение ах [напомним, что пороговая мощность накачки пропорциональна (ат) см. (5.35)] все же остается примерно на три порядка величины меньше, чем для твердотельных лазеров, таких, как Nd YAG. Вторая трудность обусловлена синглет-триплетной конверсией. Действительно, если тг ksT то молекулы будут накапливаться в триплетном состоянии, что приведет к поглощению за счет перехода 7 i->-7 2 (который является оптически разрешенным). К сожалению, это поглощение происходит, как правило, на длине волны флуоресценции (см., например, опять-таки рис. 6.29), что приводит к серьезному препятствию для возникновения генерации. Можно показать, что именно поэтому непрерывную генерацию можно получить лишь в случае, когда тг меньше некоторого значения, определяемого свойствами активной среды из красителя. Чтобы получить этот результат, заметим прежде всего, что кривую пропускания флуоресценции красителя (рис. 6.29) можно описать с помощью сечения вынужденного излучения Ое. Таким образом, если N2 — полная населенность состояния 5ь то соответствующее усиление (без насыщения) на определенной длине волны, при которой рассматривается Ое, равно ехр(Ы2<Уе1), где / — длина активной среды. Предположим теперь, что Ыт населенность триплетного состояния Гь Тогда генерация будет происходить при условии, что усиление за счет вынужденного излучения больше потерь, обусловленных триплет-триплетным поглощением, т. е. ,  [c.392]


Основную группу лазеров на твердых телах составляют лазеры на ионных кристаллах и стеклах. Основной метод возбуждения таких лазеров — оптическая накачка, наиболее характерный режим работы — импульсный. При этом, конечно, выбор исходных уравнений и численных значений величин для расчета существенно зависит от длительности импульсов накачки, гене рации и частоты их следования. Основные схемы расчета лазеров на твердых телах в настоящее время можно считать достаточно хорошо разработанными [10, 12, 27, 75, 89—92]. Твердотельные лазеры, наиболее важными и типичными представителями Которых являются лазеры на рубине и активированных неодимом стеклах, возникли одними из первых. Их разработка, исследование и расчет продолжается уже свыше четверти века и многие проблемы можно считать решенными, а методы расчета хорошо разработанными. Однако формулировки общих задач и методов расчета на современном этапе развития представляются более сложными, чем в случае электроразрядных лазеров на газах.  [c.176]

В твердотельных лазерах активные атомы лазерной среды внедряются в твердое тело, такое, как кристалл или стекло. Процесс оптической накачки заключается в том, что под действием света, генерируемого лампой-вспышкой и поглощаемого активной средой, атомы активной среды переходят со своего основного уровня на возбужденные уровни. При достаточно высокой интенсивности света накачки в лазерной среде достигается инверсия населенностей электронов, которая приводит к накоплению энергии на верхнем лазерном уровне.  [c.275]

Импульсный режим работы твердотельных лазеров задается системой накачки активной среды. Форму импульса и модовую структуру выходного излучения определяет оптическая схема лазера.  [c.45]

Интерес представляют лазеры с ламповой накачкой. Их оптические схемы подобны схеме твердотельного лазера. Активный элемент представляет собой трубчатую кювету из прозрачного в полосе накачки материала, через который прокачивается краситель. Накачка от импульсных ксеноновых ламп, которые вместе с кюветой помещены в диффузное или зеркальное устройство, подобное головке твердотельного лазера. Резонатор образован внешними зеркалами. Схема имеет элементы перестройки по длине волны генерации. Схема импульсного лазера типа ЛЖИ показана на рис, 28. Параметры импульсных лазеров приведены в табл. 5. Длина когерентности этих лазеров менее 2 мм, что делает их неприменимыми непосредственно для голографической съемки. Их можно использовать в системах воспроизведения изображений.  [c.53]

Тепловыделение в излучателе лазера. Излучатель твердотельного лазера включает в свой состав активный элемент, резонатор и осветитель. Осветитель в общем случае содержит источник оптической накачки, в качестве которого в большинстве конструкций промышленных лазеров применяются газоразрядные лампы отражатель, концентрирующий излучение накачки на активный элемент, и элементы спектральной фильтрации излучения накачки. Основной процесс в твердотельном лазере — преобразование световой энергии накачки в энергию генерируемого излучения — сопровождается потерями значительной части энергии на тепловыделение в элементах излучателя. Диаграмма характерного для промышленных неодимовых лазеров распределения энергии (мощности) накачки по последовательным ступеням ее преобразования в излучателе лазера приведена на рис, 1.1.  [c.9]

Работа лазера происходит при наличии инверсной заселенности уровней, для достижения которой в твердотельных оптических квантовых генераторах используется преимущественно так называемая оптическая накачка (т. е. воздействие световым излучением большой интенсивности). В оптических генераторах, в которых активной средой является газ, инверсная заселенность образуется в результате столкновений частиц в плазме газового разряда.  [c.128]

Существуют разные способы получения необходимой для работы лазера усиливающей излучение активной среды. Преобладание процессов вынужденного излучения над поглощением осуществляется при инверсии населенностей (Л 2>Л 1) рабочих уровней энергии 61 и 62 (см. 9.3). В импульсных твердотельных лазерах используется оптическая накачка светом мощной газоразрядной лампы-вспышки. В полупроводниковых лазерах непрерывного действия неравновесное состояние достигается при пропускании электрического тока через р-и-переход. В газовых лазерах атомы или ионы рабочего вещества возбуждаются в условиях электрического разряда. Во всех случаях затраченная на это энергия внешнего источника в конечном свете частично преобразуется в энергию когерентного излучения.  [c.445]

Из всего многообразия существующих в настоящее время лазеров авторы данной книги остановились на применении ЭВМ при разработках только двух типов лазеров — газовых и твердотельных, причем особое внимание уделяется лазерам большой мощности, имеющим наибольшее применение в промышленности. В книге прямые и обратные задачи расчета и проектирования лазеров, их проблемы и перспективы разработки САПР рассматриваются на примерах газовых электроразрядных лазеров, газовых лазеров с оптической накачкой и лазеров на конденсированных средах. Все критические замечания, советы и пожелания мы просим направлять по адресу Ленинград, ул. Саблинская, 14, ЛИТМО, Кафедра квантовой электроники.  [c.5]


Установка состоит из рабочего тела /, лампы накачки 2, обеспечивающей световую энергию для возбуждения атомов активного вещества-излучателя. Полученное излучение фокусируется и направляется с помощью оптической системы 3 на свариваемое изделие 4. Мощность твердотельных лазеров невелика — 0,015—2 кВт. Газовые лазеры обладают более высокой выходной мощностью, работают в непрерывном и импульснсш режимах и по своим технологическим возможностям становятся конкурентно-способными с электронно-лучевой сваркой.  [c.17]

Газовые лазеры. Ширина энергетических уровней в газах довольно мала (порядка нескольких гигагерц и меньше), поскольку в них по сравнению с твердым телом более слабо действуют механизмы, вызывающие уширение линий. Поэтому оптическая накачка с помощью ламп, применяемых для твердотельных лазеров, неэффективна для газовых лазеров, так как в активной газовой среде нет широких полос поглощения.  [c.288]

Твердотельные лазеры на люминесцирующих средах Л. на стёклах, активированных Nd, УЛО-лазерьг, рубиновые лазеры) накачка оптическая. Применение лазерная спектроскопия, нелинейная оптика, лазерная технология (сварка, закалка, упрочнение поверхности). Лазерные стёкла применяются в мощ1тых установках для лазерного термоядерного синтеза (ЛТС).  [c.551]

В импульсных С. источником излучения обычно являются твердотельные. и полупроводниковые лазеры, работающие в ближнем ИК-диапазоне (0,8- -1,06 мкм), излучение к-рых формируется в виде коротких импульсов. Медленно меняющиеся расстояния измеряются с помощью одиночных импульсов при. быстро меняющихся расстояниях применяется непрерывно-импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50—100 Гц, полупроводЕШКОвые — до 10 —10 Гц, Короткие импульсы (20—40 нс) твердотельных лазеров формируют в режиме модуляции добротности с помощью различного рода оптических затворов. В полупроводниковых лазерах генерация коротких импульсов мощностью до сотен Вт осуществляет- ся путём формирования коротких импульсов тока накачки.  [c.464]

Л. ОВЩЙГ ХАРАКТЕРИСТИКИ И ОСОБЕННОСТИ ГЕНЕРАЦИИ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ С ОПТИЧЕСКОЙ НАКАЧКОЙ  [c.168]

В гл. 1 мы показали, что процесс, который переводит атомы с уровня 1 на уровень 3 (для трехуровневого лазера см. рис. 1.4, а) или с уровня О на уровень 3 (для четырехуровневого лазера см. рис. 1.4,6), называется накачкой. Накачка осуществляется, как правило, одним из следующих двух способов оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных (например, для рубинового или неодимового) или жидкостных (например, на красителе) лазеров. Механизмы ушире-ния линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно мы имеем дело не с накачкой уровней, а с накачкой полос поглощения. Следовательно, эти полосы поглощают заметную долю (обычно широкополосного) света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что у них спектральная ширина линий поглощения невелика, а лампы для накачки дают широкополосное излучение, осуществить оптическую накачку довольно трудно. Замечательным исключением, которое следует отметить, является цезиевый лазер с оптической накачкой, когда пары s возбуждаются лампой, содержащей Не при низком давлении. В данном случае условия для оптической накачки вполне благоприятны, поскольку интенсивная линия излучения Не с 390 нм (достаточно узкая благодаря низкому давлению) совпадает с линиями поглощения s. Фактически этот лазер представляет интерес лишь в историческом плане, как одна из первых предложенных лазерных схем. Кроме того, его реализация на практике является весьма сложной, поскольку пары s, которые для обеспечения достаточного давления газа необходимо поддерживать при температуре 175 °С, представляют собой весьма агрессивную среду. Оптическую накачку весьма эффективно можно было бы использовать для полупроводнико-  [c.108]

Чтобы закончить эти вводные замечания, следует упомянуть о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера лазерная накачка). Свойства направленности лазерного пучка делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветителей, как в случае (некогерентной) оптической накачки. Такая накачка является довольно простой, и в дальнейшем мы ее не будем рассматривать. Хотелось бы лишь здесь отметить, что благодаря монохроматичности излучения лазера накачки ее применение не ограничивается лишь твердотельными и жидкостными лазерами (как в случае некогерентной оптической накачки), но ее можно также использовать для накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна, разумеется, совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства газовых лазеров дальнего ИК-Диапазона (скажем, таких лазеров, в которых используются метиловый спирт СНзОН в виде паров) с помощью излучения соответствующей длины волны СОглазера.  [c.109]

Вообще говоря, энергетические уровни в газах уширены довольно слабо (ширина порядка нескольких гигагерц и меньше), поскольку действующие в газах механизмы уширения слабее, чем в твердых телах. Действительно, в газах, находящихся при обычных для лазеров давлениях (несколько мм рт. ст.), столк-новительное уширение очень мало и ширина линий определяется главным образом доплеровским уширением. В связи с этим в газовых лазерах не используется, как в твердотельных лазерах, оптическая накачка с помощью ламп. В самом деле, такая накачка была бы крайне неэффективна, поскольку спектр излучения этих ламп является более или менее непрерывным, в то время как в активной газовой среде нет широких полос поглощения. Как уже упоминалось в гл. 3, единственный случай, когда генерация была получена в газе при оптической накачке такого типа, — это цезий, возбуждаемый линейной лампой, заполненной гелием. В данном случае условия для оптической накачки вполне благоприятны, поскольку некоторые линии излучения Не совпадают с линиями поглощения s. Однако цезиевый лазер  [c.343]

Основными элеменгами твердотельного лазера с оптической накачкой являются цилиндрический лазерный стержень, спиральная или линейная лампа-вспышка, отражатель, обеспечивающий хорошую оптическую связь между лампой-вспышкой и лазерным стержнем, и оптический резонатор, содержаш,ий зеркала с полным и частичным отражением.  [c.275]

К повышению Р . пр ведет также такое изменение формы элементов, которое приводит к уменьшению перепадов температуры при неизменной плотности тепловыде-чения, например, уменьшение диаметра элемента при одновременном увеличении его длины, членение объема на части путем продольных или поперечных (дисковые активные элементы) распилов и т. п. Каждый из указанных приемов обладает своими недостатками. Так, при переходе от цилиндрических элементов к пластинчатым равного объема с большим значением отношения ширины к толщине вытянутая форма поперечного сечения пучка излучения доставляет большие неудобства для последующего его преобразования оптическими системами применение лазеров с дисковыми активными элементами сдерживается меньшим КПД системы накачки и трудностями при создании иммерсионных хладагентов, охлаждающих торцовые поверхности дисков и попадающих в пучок генерируемого излучения. Так что в целом термомеханическое разрушение активных элементов продолжает оставаться фактором, препятствующим более широкому использованию стеклянных активных сред в практике создания и использования твердотельных лазеров.  [c.29]


Достижение наивысших характеристик лазеров, работающих в напряженных режимах накачки, возможно лишь с использованием тех или иных приемов компенсации термооптических искажений, которые часто усложняют оптическую схему и конструкцию излучателя. В практике создания лазеров массового спроса часто предпочитают простоту конструкции достижению предельных характеристик. В этом случае учет термооптических эффектов при выборе элементов резонатора и их взаимного расположения, конструкции системы накачки, режима работы системы охлаждения является особенно необходимым. В настоящей главе рассмотрены лишь те вопросы выбора элементов и конструирования излучателей лазеров на неодимовом стекле и АИГ Nd, которые непосредственно связаны с термооптикой лазеров. Общие же рекомендации по конструированию твердотельных лазеров можно найти в работах [8, 119].  [c.118]

АИГ Nd-лазер принадлежит к твердотельным лазерам с оптической накачкой. Лазерно активными веществами служат синтетические кристаллы иттрий-алюминиевого граната (Y3AI5O12), содержащие ионы Nd + в объемной концентрации, приблизительно равной 1,5 %. Более высокие концентрации невозможны вследствие различия в радиусах ионов Nd и Y +. АИГ-кристаллы имеют кубическую решетку и поэтому являются оптически изотропными. На рис. 2.13, а показана схема уровней энергии иона Nd +, находящегося в электрическом поле кристалла. Из левой части рис. 2.13, а видно, что схема относится к четырехуровневому лазеру.  [c.75]

Усиление любого лазера обычно меняется по диаметру активной среды, причем оно максимально в центре трубки и спадает к краям. В газовых лазерах характеристика усиления более однородна и воспроизводима, тогда как в твердотельных лазерах с оптической накачкой усиление сильно зависит от геометрии оптической накачки и может заметно меняться как при замене ламп-вспышек, так и при перемещении самого лазерного стерлсня. В твердотельных лазерах изменение усиления на протяжении одного импульса лучше всего изучать фотометрическим методом. Здесь мы рассмотрим только вопрос об исследовании радиального изменения усиления в случае газовых лазеров. Очевидно, что теми же методами можно исследовать твердотельные лазеры непрерывного действия.  [c.248]

При этом мы не будем рассматривать суш,ествуюш,ие на сегодняшний день многомодовые твердотельные лазеры с оптической накачкой, ибо они нам кажутся непригодными для применения в линиях связи. Как импульсные, так и непрерывно ра-ботаюш,ие твердотельные лазеры часто испускают излучение в виде пичков, характер которых определяется активной в данный момент модой. Разность частот двух мод, зависяш,ая от изме-няюш,ихся во времени размеров кристалла и показателя преломления, обычно попадает в СВЧ-диапазон. Поскольку выходной сигнал твердотельного лазера многомодовый, после детектирования он будет содержать очень сложные произведения перекрестной модуляции. В принципе от многомодового характера излучения твердотельных лазеров можно избавиться, пользуясь известными методами селекции мод. Но при этом резко падает выходная мош,ность лазера, а к. п. д. оказывается настолько низким, что такой прибор уже не мол ет конкурировать с ионными газовыми лазерами непрерывного излучения.  [c.454]

Настоящая книга содержит пять глав. Гл. 1 посвящена оптике гауссовых пучков. Глава 2 посвящена методу интегрального уравнения. В ней рассматриваются методы исследования лазерных резонаторов, содержащих негауссовы элементы — диафрагмы с резким краем, элементы с аберрациями и др. В главе 3 исследуются резонаторы, содержащие несколько оптических элементов (например, вспомогательные зеркала) различного назначения. Вспомогательные зеркала могут влиять на продольный спектр резонатора, в частности, делать его более редким. При этом важную роль играет согласование поперечных мод лазерного резонатора. В лазерах па красителях дополнительные оптические элементы позволяют реализовывать одномодовый режим генерации. Глава 4 посвящена резонаторам твердотельных лазеров. Их основной особенностью является наличие термооптически искаженного под влиянием накачки активного элемента. Отыскание ре-зонаторных конфигураций, наименее восприимчивых к нестабильностям накачки, является довольно трудным делом, читатель почерпнет в четвертой главе много полезного для себя в этом отношении. В главе 5 излагаются геометро-оптические методы исследования резонаторов. Введение и гл. 1, 3, 5 написаны В.П. Быковым гл. 2, 4 — 0.0. Си-личевым.  [c.8]


Смотреть страницы где упоминается термин Оптическая накачка. Твердотельные лазеры : [c.175]    [c.356]    [c.19]    [c.96]    [c.232]    [c.64]    [c.81]   
Смотреть главы в:

Физика процессов в генераторах когерентного оптического излучения  -> Оптическая накачка. Твердотельные лазеры



ПОИСК



КПД лазеров накачка

Л <иер накачкой

Лазер

Лазер твердотельный

Накачка оптическая

ОГС-лазеров в ДГС-лазерах

Оптическая ось с лазером

ТВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ С ОПТИЧЕСКОЙ НАКАЧКОЙ Общие характеристики и особенности генерации твердотельных лазеров с оптической накачкой



© 2025 Mash-xxl.info Реклама на сайте