Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическое описание квантовых К-систем

Квантовое уравнение Больцмана. Рассмотрим разреженный газ частиц, взаимодействие между которыми описывается короткодействующими силами. В нервом приближении кинетические процессы в системе можно описать с помощью парных столкновений. В случае сильного взаимодействия требуется более точное описание рассеяния двух частиц, так как борновское приближение, рассмотренное в разделе 4.1.6, становится неприменимым.  [c.269]


Предположим, что суммирование по 5 в (4.3.30) ведется в пределах 1 < 5 < ш. Тогда в квазиравновесном состоянии приведенные матрицы плотности при s <т рассматриваются как независимые неравновесные величины, а матрицы плотности более высокого порядка выражаются через них. Частный случай ш = 1 соответствует граничному условию Боголюбова, согласно которому все приведенные матрицы плотности в отдаленном прошлом выражаются через одночастичную. Если в формуле (4.3.30) мы положим 5 = О при 5 > 3, то получим статистический оператор для квазиравновесного ансамбля, в котором заданными величинами являются одночастичная и двухчастичная матрицы плотности. Этот ансамбль описывает важные долгоживущие корреляции, например, связанные двухчастичные состояния ). Эволюция системы описывается системой уравнений для одночастичной и двухчастичной матриц плотности. Здесь мы не будем излагать эту довольно сложную теорию, а рассмотрим один частный, но важный пример обобщенного квазиравновесного статистического оператора, который соответствует объединению кинетического и гидродинамического описаний квантовых процессов [128].  [c.289]

Линейные кинетические уравнения. Мы начнем с кинетического описания процессов переноса в квантовых системах ). Пас будет интересовать линейное кинетическое уравнение для неравновесной поправки к одночастичной матрице плотности  [c.386]

Нерешенной проблемой квантовой кинетической теории остается учет неравновесных многочастичных корреляций. В параграфе 4.3 первого тома было получено квантовое обобщение кинетического уравнения Энскога, в котором учитываются корреляции, связанные с законом сохранения энергии. Классическое уравнение Энскога применялось и до сих пор успешно применяется для описания кинетических процессов в плотных газах. Это позволяет предположить, что и в квантовых системах основную роль играют многочастичные корреляции, связанные с сохранением энергии. К сожалению, интеграл столкновений в квантовом уравнении Энскога имеет гораздо более сложную структуру, чем в классическом случае, поэтому для решения конкретных задач требуется разработка эффективных численных методов.  [c.283]

Кроме того, функция распределения вероятности зависит только или от координаты или только от импульсов. В квантовой механике, ассоциируемой с волновой функцией ц , в отличие от классической механики, квантовое состояние определяется только или координатой или импульсом. И. Пригожин представил функцию квантового состояния ц/ как амплитуду вероятности, для которой соответствующая вероятность р задается произведение амплитуды ij (q) и ц/(я ). Так что, функция квантового состояния у есть функция двух наборов переменных либо координат q и q , либо импульсов р и р . В эволюции квантовых систем И. Пригожин отводит ключевую роль резонансам Пуанкаре, чуждым локальному описанию поведения системы на уровне траекторий. Пуанкаре рассмотрел динамическую систему как характеризуемую суммой кинетической энергии ее частиц и потенциальной энергии, обусловленной их взаимодействием. Если взаимодействие отсутствует (потенциальная энергия равна нулю), то траектория движения частиц описывается интегрируемыми функциями. Пуанкаре доказал, что динамические системы в большинстве случаев являются неинтегрируемыми. Он также  [c.66]


Перейдем теперь к получению кинетического описания системы, используя свойство ослабления корреляций для квантовых Я-систем. В уравнении (1.12) от времен (.1,0) перейдем ко временам ь, и >0 я применим к нему оператор огрубления (2.9). Это дает  [c.206]

Наш подход к теории неравновесных процессов основан на следующем свойстве макроскопических систем, тесно связанном с неустойчивостью классических фазовых траекторий X t) = q t) p t)) и квантовых состояний Ф( )) если нас интересует поведение системы на не слишком малых интервалах времени, то микроскопические детали ее начального состояния становятся несущественными и количество параметров, необходимых для описания системы, уменьшается. Эта идея сокращенного описания многочастичных систем была впервые высказана Боголюбовым и использована им для вывода кинетических уравнений из уравнения Лиувилля [7].  [c.79]

Диагональное квазиравновесное распределение для квантовых систем. В теории неравновесных квантовых систем обобщенные кинетические уравнения часто строятся для диагональных элементов Д/ -частичной матрицы плотности. Эти диагональные элементы можно интерпретировать как неравновесные вероятности для квантовых состояний системы. Ясно, что в таких случаях мы имеем дело с сокращенным описанием неравновесного состояния и вероятности играют роль наблюдаемых.  [c.100]

Ясно, что кинетическая теория, основанная на релятивистском (классическом или квантовом) уравнении Больцмана, непригодна для описания неравновесных процессов в произвольных квантово-полевых системах, поэтому естественно обратиться к более общим методам статистических ансамблей и попытаться вывести уравнения переноса для таких систем, исходя из релятивистского уравнения Лиувилля. На этом пути уже достигнут определенный прогресс. Метод неравновесного статистического оператора, изложенный в настоящей книге, применялся в некоторых задачах [13-15, 34, 88]). От-  [c.282]

Мы поставим перед собой задачу показать, как осуществляется переход от механического (или, как чаще говорят, динамического) рассмотрения системы многих частиц к кинетическому, уже использовавшемуся нами, методу описания газов. При этом мы изложим выводы кинетических уравнений, основанные на классической и квантовой статистической механике систем многих частиц.  [c.174]

Это описание продолжается в П3.2, посвященном различным вопросам физической интерпретации операторов. Дается понятие оператора полной энергии системы (гамильтониана), вводятся квантовые скобки Пуассона и поясняется оператор дифференцирования по времени. Говорится также и о матричном представлении физических величин. Среди операторов физических величин рассматриваются базовые операторы радиуса-вектора, потенциальной и кинетической энергии, импульса, углового момента, инверсии.  [c.458]

В разделе 18.1 представлена модель, которая позволяет описать квантовым образом затухание и усиление поля в резонаторе. Далее в разделе 18.2 излагается общая формулировка динамики малой системы, взаимодействующей с большим резервуаром. В разделе 18.3 с помощью этого формализма выведено основное кинетическое уравнение для модели резонаторного поля, взаимодействующего с пучком двухуровневых атомов. Здесь мы используем как теорию возмущений, так и точное описание. Точный подход немедленно даёт основное  [c.562]

В гл. 6 уже обсуждался вопрос о выводе кинетического уравнения для классических Я-систем. Обычная процедура получения кинетического уравнения связана с использованием гипотезы об ослаблении корреляций или эквивалентного ей допущения (например, приближения хаотических фаз). Это приближение позволяет ввести сокращенное описание системы в виде кинетического уравнения. Однако, как было показано в гл. 6, если известно, что динамическая система является Я-системой, то никаких гипотез для получения кинетического уравнения не требуется. Сокращение описания возникает автоматически вследствие существования процесса перемешивания в фазовом пространстве по одной из переменных системы. По этой же переменной происходит и быстрое ослабление корреляций. Аналогичное утверждение (с определенными оговорками) можно сделать и для квантовых Я-систем.  [c.198]


В последние годы существенно развилась и сформировалась статистическая теория неравновесных процессов, основы которой были заложены еще Больцманом более ста лет назад (см., например, [5—9]). При этом удается дать единое изложение статистических методов описания неравновесных диссипативных процессов на всех возможных уровнях кинетическом, гидродинамическом, диффузионном, химической кинетики, термодинамическом. Во всех случаях (при переходе от полного динамического онисания на основе обратимых уравнений классической или квантовой механики к неполному статистическому описанию) устанавливаются соответствующие диссипативные уравнения для макроскопических, коллективных переменных. На основе этих уравнений в открытых системах описываются и различные неравновесные фазовые переходы, приводящие к образованию диссипативных структур на разных стадиях процессов самоорганизации. Тем самым современная статистическая теория неравновесных процессов является и фундаментом и одновременно основным рабочим инструментом синергетики.  [c.7]

Многие квантовые системы можно рассматривать как смесь слабо взаимодействующих газов квазичастиц (фононов, электронов, магнонов и т.д.). Тогда кинетическая стадия эволюции системы описывается одночастичной матрицей плотности где сложный индекс I включает всю информацию о базисных ква-зичастичных состояниях (тип квазичастицы, импульс, проекцию спина и т.д.). Такое описание предполагает, что гамильтониан системы имеет вид Я = Я + Я, где Я — гамильтониан свободных квазичастиц, а Я — гамильтониан слабого взаимодействия. Обычно базисные состояния 11) удобно выбрать так, чтобы в представлении чисел заполнения Я был диагонален  [c.82]

Описание сильно неравновесных состояний, а также вычисление кинетич. коэф. производятся с помощью кинетического уравнения Больцмана. Это ур-ние представляет собой интегродифференц. ур-ние для одночастичной ф-ции распределения (в квантовом случае — для одночастичной матрицы плотности, или статистич. оператора). Оно содержит члены двух типов. Одни описывают изменение ф-ции распределения при движении частиц во внеш. полях, другие — при столкновениях частиц. Именно столкновения приводят к возрастанию энтропии неравновесной системы, т, е. к релаксации. Замкнутое, т. е. не содержащее др. величин кинетич. ур-ние, невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетич. ур-ние, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого ур-ния зависит от эфф. сечения рассеяния молекул друг на друге. Если это сечение известно, ур-ние можно решать, разлагая искомую ф-цию по ортогональным полиномам. Таким способом можно вычислить кинетич. коэф. газа, исходя из известных законов взаимодействия между молекулами. Кинетич. ур-ние учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэф. по плотности газа. Удалось найти и более точное ур-ние, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.  [c.672]

В заключение этой главы следует сделать одно замечание общего характера по поводу приведенного вывода кинетического уравнения. Оно связано с использованием условия квазиклассичности и с предположением, что параметр достаточно мал. Как известно из 9.5, именно это условие (см. (9.5.37И обеспечивает существование стохастичности классического типа в квантовых йГ-системах. Однако неясным остается чисто квантовый случай ( 1, либо достаточно большие времена прн % < 1). Если в такой системе отсутствуют случайные параметры и на нее не действуют случайные силы, то вопрос о том, как возникает сокращенное статистическое описание в существенно квантовом случае, в настоящее время остается открытым.  [c.208]


Смотреть страницы где упоминается термин Кинетическое описание квантовых К-систем : [c.78]    [c.10]    [c.350]   
Смотреть главы в:

Стохастичность динамических систем  -> Кинетическое описание квантовых К-систем



ПОИСК



Квантовые А-системы

Кинетическая системы

Описание

Описание системы

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте