Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромистый Свойства и структура

Структура и свойства хромистых нержавеющих и коррозионностойких сталей описаны в главе 1. В настоящем разделе приведены данные по свойствам и применению сталей и сплавов в условиях их работы при высоких температурах. Химический состав и механические свойства сталей этой группы указаны в табл. 2—4.  [c.122]

Хромованадиевая сталь. Ванадий в стали является раскисляющим и карбидообразующим элементом. Незначительное (до 0, 20/о) присутствие его в хромистой стали, обеспечивая полноту раскисления и способствуя получению мелкого зерна и тонкой структуры, повышает механические свойства и в особенности ударную вязкость. Ванадий уменьшает чувствительность стали к перегреву. Критическая скорость охлаждения при закалке с высоких температур, обеспечивающих перевод карбидов ванадия в твёрдый раствор, для хромованадиевой стали меньше, чем для хромистой. Прокаливаемость хромованадиевой стали при недостаточно высокой температуре закалки ниже прокаливае-мости хромистой стали [8]. Хромованадиевая сталь получила наибольшее распространение в США в автомобильной и других отраслях промышленности в Западной Европе она назначается преимущественно для изготовления ответственных пружин.  [c.378]


Механические свойства и термическая обработка хромистых нержавеющих сталей приведены в табл. 1. Структура и свойства этих сталей в значительной степени зависят от относительного содержания в них углерода (никеля) и хрома. Стали с низким содержанием углерода и высоким хрома имеют ферритную структуру и не закаливаются. Чем выше содержание углерода и ниже хрома, тем больше способность стали к упрочнению в результате закалки, что связано с особенностями фазовой структуры стали.  [c.19]

Обрабатываемость нержавеющих хромистых, хромоникелевых и хромомарганцовистых сталей отличается от обрабатываемости углеродистых сталей и зависит от комплекса свойств, характеризующих твердое тело химического состава, структуры, механических и теплофизических свойств. По сравнению с обрабатываемостью бессемеровской стали (принято за 100%), обрабатываемость нержавеющих сталей характеризуется от 80—50% (хромистые) до 30—25% (хромоникелевые аустенитные стали).  [c.746]

Механические, физические, коррозионные и технологические свойства, а в соответствии с этим и области применения хромистых сталей зависят от их химического состава и структуры (табл. 10.4, 10.5).  [c.497]

Сопоставить структуру, механические свойства и степень стойкости против коррозии в указанных средах выбранного сплава с такими же свойствами нержавеющей хромистой и хромоникеле-вой сталей.  [c.383]

Сравнить состав, структуру, режим термической обработки, свойства и область применения стали выбранного состава с аналогичными характеристиками нержавеющей хромистой стали с таким же содержанием углерода.  [c.390]

Необходимые для работы изделий структуру и свойства легированные стали приобретают, как правило, после окончательной термической и химико-термической обработки. Легированные стали, структура и свойства которых при термической обработке не меняются, упрочняют путем пластического деформирования. Все большее распространение получает термо-механическая обработка легированных сталей (хромистых, кремнистых и др.), при которой сочетаются процессы термической обработки и пластического деформирования. Данные о свойствах конкретных легированных сталей и режимах их термической, химико-термической и термо-механи-ческой обработки приводятся в справочниках [4,5].  [c.159]

Структура и свойства хромистых сталей и сварных швов зависят от содержания хрома и углерода, а также от степени легирования их другими элементами. Рассмотрим влияние легирующих элементов на структуру высоколегированных сталей, сплавов и сварных швов.  [c.583]


Необыкновенная стойкость нержавеющих хромистых и хромо-никелевых сталей объясняется, прежде всего, их способностью пере-ходить в пассивное состояние благодаря высокому содержанию хрома. Примеси других элементов (молибден, медь) придают хромоникелевым сталям различные специальные свойства и высокую стойкость против коррозии даже в активном состоянии (см. гл. 2.5.). Одной из серьезных причин, ограничивающих срок службы изделий из нержавеющих сталей, является склонность к межкристаллитной коррозии. Чаще всего приходится встречаться с межкристаллитной коррозией аустенитных сталей в связи с их широким применением в агрессивных средах химической промышленности. Межкристаллитная коррозия проявляется неодинаково у отдельных групп нержавеющих сталей, различающихся не только по основному химическому составу, но и по структуре, а следовательно, и по другим свойствам [232, 241, 244].  [c.27]

Коррозионная стойкость, как у хромистых сталей. Противостоят коррозии в пассивном состоянии. Молибден повышает коррозионную стойкость, как и у хромистых сталей. Хорошие механические свойства и преимущества аустенитной структуры. Ограниченная склонность к коррозионному растрескиванию в хлоридах  [c.212]

Легирование хромом не только обеспечивает коррозионную стойкость сталей в окислительных средах, но и определяет их структуру, механические свойства, жаропрочность, технологические свойства. Образуя с железом непрерывный ряд твердых растворов при концентрациях до 12 %, хром затем способствует замыканию у-области, что является основной причиной формирования в хромистых сталях различной структуры и многообразия их свойств.  [c.64]

К структуре зоны термического влияния, а следовательно и к термическим циклам нагрева и охлаждения при сварке, предъявляются различные требования, которые зависят и от материала и от условий эксплуатации изделия. В результате несоблюдения необходимых режимов структура шва и зоны влияния может значительно ухудшиться, что приведет к снижению качества сварных соединений. Так, в малоуглеродистой стали существенного изменения свойств у зоны термического влияния обычно не происходит. Низколегированные и углеродистые конструкционные стали в результате слишком быстрого охлаждения и подкалки иногда значительно снижают пластичность. В закаленных сталях (перлитного и мартенситного класса) при излишне замедленном охлаждении может произойти отпуск зоны термического влияния. Длительный нагрев высоколегированных хромистых сталей ферритного класса приводит к укрупнению их зерна, снижению пластических свойств и коррозионной стойкости. Хромоникелевые стали аустенитного класса нельзя длительное время перегревать выше температуры распада аустенита, так как при этом нарушается однородность аустенитной структуры и теряется коррозионная стойкость.  [c.154]

Хромистая сталь. Хром в стали находится частью в твёрдом растворе в феррите и частью в виде прочных простых и двойных карбидов, которые более медленно, чем цементит, переходят в твёрдый раствор, а также выделяются из него, задерживая распад аустенита и снижая критическую скорость охлаждения стали при закалке. Хром повышает предел прочности, предел текучести и износоустойчивость стали. При этом вследствие увеличения дисперсности структуры пластические свойства стали в термообработанном состоянии при присадке до 1,0—1,5% Сг не снижаются [8]. Не оказывая влияния на размеры зерна при коротких выдержках, хром способствует росту зерна при длительной цементации. Хром снижает теплопроводность и свариваемость стали и увеличивает устойчивость против коррозии.  [c.377]

Хромомолибденовая сталь. Молибден в стали находится частично в твёрдом растворе, а также образует стойкие сложные карбиды. Введение молибдена в хромистую сталь сообщает ей мелкозернистость и тонкую структуру, повышает прочность при равных показателях пластичности и увеличивает про-каливаемость. Молибден устраняет склонность хромистой стали к отпускной хрупкости и к росту зерна при перегреве. Ценным свойством стали, содержащей молибден, является её повышенное сопротивление ползучести (крипу).  [c.379]


СЛОЖНОЛЕГИРОВАННЫЕ 12%-ные ХРОМИСТЫЕ нержавеющие и жаропрочные стали Свойства и структура  [c.125]

Ряд высокохромисилх сталей в зависимости от рея има термообработки и температуры эксплуатации изделия могут изменять свои структуру и свойства, в основном приобретая хрупкость. В зависимости от химического состава стали и влияния термического воздействия в хромистых сталях наблюдаются 475°-ная хрупкость хрупкость, связанная с образованием сг-фазы охрупчивание феррита, вызываемое нагревом до высоких температур. 475°-ная хрупкость появляется в хромистых сплавах и сталях при содержании 15—70% Сг после длительного воздействия температур 400—540° С (особенно 175 С). Добавки титана и ниобия ускоряют процесс охрупчивания при 475°.  [c.260]

Широкое применение получили стали системы Fe — Сг — Ni без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали Склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- зованию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость.  [c.39]

Структура и свойства хромистых сталей зависят от количества хрома и углерода. Стали 12X13 и 20X13 доэвтектоидные и в отожженном состоянии их структура состоит из хромистого феррита и перлита. После закалки с температуры 1000... 1100 °С в масле и отпуска при  [c.96]

Для сравнительной оценки эрозионной стойкости мартенситных сталей испытаниям подвергали различные по составу и свойствам стали. В некоторых исследуемых сталях, имеющих низкое содержание углерода (12X13, 1Х14НД, 14Х17Н2), при металлографическом исследовании был обнаружен структурно-свободный феррит в количестве примерно 10%. Участки хромистого феррита располагались равномерно по всему полю шлифа. По границам этих участков наблюдались скопления карбидов хрома. Наличие в структуре мартенситных сталей хромистого феррита отрицательно сказывается на их механических свойствах и эрозионной стойкости. Поэтому для получения при испытаниях сравнимых результатов обращали внимание на содержание в сталях углерода и хрома, а также других легирующих элементов, чтобы не было недопустимых отклонений по химическому составу.  [c.191]

По данным, приведенным в работе [4 ], введение 1 % Си в стали, содержащие 12—14% Сг и 0,1% С, после термической обработки приводит к выравниванию свойств стали по всему объему отливки. Положительное влияние меди отмечается и другими авторами [7]. Исследование эрозионной стойкости стали 1Х14НД показало, что эта сталь благодаря наличию в ее составе меди обладает высоким сопротивлением микроударному разрушению. Структура этой стали в литом состоянии состоит из мартенсита и небольших участков хромистого феррита, по границам которых расположены карбиды хрома. Такая структура обусловливает высокие прочностные характеристики стали (см. табл. 68). После закалки с 1050° С и отпуска при 600° С структура стали улучшается, однако количество хромистого феррита почти не изменяется. Разрушение начинается с границ хромистого феррита и распространяется в сторону феррита. Разрушение мартенсита начинается после полного разрушения участков феррита.  [c.195]

Самое разнообразное применение нержавеющей стали различных марок в машиностроении, строительстве и в быту обусловливает различные требования, которые предъявляются к стали. Эти требования высокая твердость и износостойкость, хорошие режущие свойства, хорошая обрабатываемость, сопротивляемость ударам, достаточная вязкость, хорошая штампуемость в холодном состоянии и наивысшая коррозионная стойкость. Естественно, что всем этим Словиям один тип нержавающей стали удовлетворить не может. В машиностроении применяется несколько типов нержавеющих сталей, которые в основном разделяются на аустенитные — хромоникелевые и феррито-мартенситные — хромистые. Их однофазная структура создается путем тершческой обработки.  [c.357]

Типовая термическая обработка хромистых, вольфрамовых и молибденовых сталей состоит в закалке с последующей стабилиз иней структуры и свойств старением. Для сталей с кобальтом и сталей, содержащих вольфрам и молибден, лучшие результаты получаются при тройной термообработке 1) быстрый нагрев до 1100— 1200° с кратковременной выдержкой (10—20 минут) и охлаждением яа воздухе 2) нагрев до 750 с выдержкой в течение получаса н охлаждением на воздухе и 3) последующая закалка в масле с нор мальной температуры (850—950°) для образования мартенсита Тройная обработка делается для того, чтобы перевести сначала карбиды в твердый раствор, а затем выделить их в высокодисперс ном состоянии.  [c.134]

Систематические исследования влияния отдельных легирующих элементов на структуру, свойства и технологичность 12%-ных хромистых сталей позволили определить оптимальные содержания С, Мо, W, V и ЫЬ, обеспечивающие высокую жаропрочность при оптимальных содержаниях свободного дельта-феррита. Было установлено, что, с одной стороны, сво дный дельта-феррит понижает технологичность сталей этого класса при горячей механической и термической обработке, приводит к резкой анизотропии свойств после горячей механической обработки, вызывает хрупкость и снижает жаропрочность. Одцако, с другой стороны, дельта-феррит препятствует образованию горячих трещин при сварке.  [c.45]

Среди средне- и высоколегированных сталей наибольший интерес представляют хромистые и хромоникелевые нержавеющие и кислотоупорные стали, которые широко применяются в сварных изделиях. химической аппаратуры. Основными легирующими присадками в тих сталях являются хром и никель, которые обусловливают структуру и специальные свойства стали. Структура этих сталей в значительной мере определяет особенности их сварлваемости и свойства сварного соединения. В зависимости от содержания хрома, углерода, никеля и других элементов эти стали могут принадлежать к аустенитному, мар-тенситному, полуферритному и ферритному классам. Сплавы, имеющие ферритную структуру, не претерпевают фазовых превращений при нагреве и поэтому не могут термически обрабатываться. При повышении содержания углерода сталь становится термически обрабатываемой даже при высоких содержаниях хрома. В таких сталях при нагреве происходит превращение в аустенит, который затем при охлаждении распадается с образованием феррито-карбидных смесей в виде перлита или промежуточных структур, а также частично превращается в мартенсит (полуферритные стали) или полностью превращается з И  [c.211]


Хромистые стали с 4—6% Сг могут считаться только полужаростой-кими. Они не обладают нержавеющими свойствами и кислотостойкостью более высоколегированных хромистых сталей. Стали этого класса вследствие своей относительной доступности и повышенной, по сравнению с углеродистыми сталями, коррозионной устойчивости, высокой технологичности и повышенной прочности широко применяются в нефтяной промышленности для изготовления крекинг-установок, а также в котлотурбо-строении, для аппаратуры, работающей под давлением при повышенных температурах, для пароперегревателей и других деталей. Содержание углерода в них колеблется от 0,15 до 0,25%, отдельные марки содержат также небольшие присадки Мо, Мп, V, 51, Т1, Ш, А1. Стали, содержащие С,5% молибдена и, кроме того, небольшие присадки ванадия, обладают повышенной устойчивостью против водородной коррозии и поэтому находят применение в азотной промышленности для установок синтеза аммиака. Так как эвтектоидная точка для содержания хрома 4—6% лежит при 0,5—0,6% углерода, то эти стали относятся к доэвтектоидному классу, т. е. обладают ферритно-перлитной структурой после отпуска (860 ). Твердость их в этом состоянии — около 150—170 по Бринеллю. При нагреве выше критических температур и охлаждении на воздухе они частично закаливаются, приобретая твердость порядка 300 единиц по Бринеллю. Типичной маркой подобных сталей является сталь Х5М, содержащая <0,15% С,-<0,5 51, <0,6 Мп, 4—6 Сг, 0,5—0,6 Мо. Стали этого  [c.481]

Важно, что окалиностойкость, столь существенно зависящая от состава стали или сплава, не зависит от его структуры, т. е. это свойство структурно цечувст-вительное. Так, окалиностойкость ферритных (чисто хромистых) и аустенитных (хромоникелевых) сплавов, как видно из рис. 336, практически одинакова.  [c.451]

По-видимому, с целью придания металлу корпуса крана в зоне уплотнения и расположения винтов (концентраторов напряжений) антикоррозионных свойств 1аплавка производилась хромистыми электродами ферритного класса. В процессе сварки наплавленного металла с основным металлом корпуса крана вследствие перемешивания содержание хрома в наплавленном слое уменьшилось до 8,5%. Такого содержания хрома недостаточно для получения коррозионностойкой ферритной структуры. В результате в наплавленном слое образовалась мартенситная структура, не обладающая стойкостью против сероводородного растрескивания, что привело в итоге к возникновению трещин в корпусе 6" кранов и к нарушению их герметичности.  [c.47]

Введение в сплавы на основе железа,кроме хрома, еще и никеля в количестве 10 % и более переводит структуру сталей из феррит-ной (присущей хромистым сталям) в более галогенную (а значит-и более коррозионноустойчивую) аустенитную. Никель придает сплаву также более высокие пластические свойства при сохранении прочностных характеристик и повышает пассивирующую способность в депассивирующих средах едких щелочей, расплавах солей и др.  [c.93]

Нержавеющие стали, имеющие аустенитную структуру, обладают более высокой коррозионной стойкостью, лучщими технологическими свойствами по сравнению с хромистыми нержавеющими сталями, в частности.луч-ше свариваются. Они сохраняют прочность до более высоких температур и в то же время аустенитные стали не теряют пластичности при низких температурах.  [c.97]

Коррозионные свойства хромистых сталей во многом зависят от содержания в них углерода. При увеличении содержания углерода до 0,3-0,4 % в сталях с 13-15%-ным содержанием хрома наблюдается резкое понижение коррозионных свойств. Следует иметь в виду, что высокохромистые стапи после закалки имеют более высокую коррозионную устойчивость, чем в отожженном состоянии. Никель сам по себе легко активируется ионами хлора, однако введение его в сплав железо-хром резко повышает сопротивление сплава активирующему действию хлоридов благодаря приданию стали аустенитной структуры, обладающей повышенной стойкостью в растворах хлоридов, т.е< стойкостью к точечной коррозии. Наиболее устойчиво сохраняется в растворах хлоридов пассивное состояние стали с полностью аустенитной структурой. Молибден и кремний препятствуют активированию нержавеющих сталей ионами хлора.  [c.72]

Хромистая сталь с содержанием 16—18 /оСг может иметь как однофазную (ферритную) структуру, так и двухфазную (ферритно-мартенситную) структуру. Однофазная хромистая сталь с содержанием 16—18< /о Сг более устойчива против коррозии, чем хромистая сталь с содержанием 12—14% Сг. Она применяется в химической промышленности—для абсорбционных башен, теплообменников, коммуникаций, труб, баков для хранения и цистерн для перевозки азотной кислоты в автотракторной — для газогенераторов в других отраслях промышленности—для всевозможной аппаратуры и деталей с низкой твёрдостью, не работающих на удар, а также для предметов домашнего обихода. При содержании 0,08—0,12 /о С в отожжённом состоянии эта сталь имеет следующие механические свойства предел прочности при растяжении 45—60 кг мм , предел пропорциональности 25—30 кг1мм , удлинение 65 = 25—30%, сужение 55— 70%.  [c.489]


Смотреть страницы где упоминается термин Хромистый Свойства и структура : [c.12]    [c.358]    [c.44]    [c.1365]    [c.220]    [c.30]    [c.147]    [c.275]    [c.81]    [c.67]    [c.242]    [c.176]    [c.118]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.199 , c.201 ]



ПОИСК



Свойства с а-структурой



© 2025 Mash-xxl.info Реклама на сайте