Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромистые Термическая обработка

Режимы термической обработки (обычно применяемые) хромистых нержавеющих сталей U получаемые при этом механические свойства приведены в табл. 82.  [c.482]

Режимы термической обработки и механические свойства хромистых нержавеющих сталей  [c.482]

Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозии хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется.  [c.216]


Высокой коррозионной стойкостью обладают сплавы с однофазной и однородной структурой твердого раствора. При этом оптимальной термической обработкой хромистых сталей является закал-  [c.263]

Химический состав, термическая обработка и механические свойства основных марок хромистой нержавеющей стали показаны в табл. 19.  [c.32]

В связи со склонностью хромистой стали к карбидному превращению ( порче ) хорошие результаты получаются пр и кратковременном нагреве стали перед закалкой. Закалка в воду обеспечивает хорошие магнитные свойства, однако, учитывая возможности коробления и образования трещин, предпочитают применять охлаждение в масле. Перед использованием в аппаратуре магниты из хромистой стали подвергаются старению. Рекомендуется следующая последовательность окончательной термической обработки  [c.215]

Режимы термической обработки хромистых сталей [25]  [c.81]

Хромистые стали [7] классифицируют по содержанию хрома. Стали с 12—16 % Сг делят в зависимости от содержания в них углерода на ферритные (до 0,2% С) и мартенситные (свыше 0,2% С). Коррозионная стойкость мартенситных сталей зависит от режима термической обработки. При закалке в области температур более 900° С большая часть углерода остается в твердом растворе. При закалке и последующем отпуске при температурах 500—650° С образуются карбиды, металлическая матрица по границам зерен обедняется хромом, и вследствие этого коррозионная стойкость стали значительно снижается.  [c.32]

Хромистые бронзы (хромистая медь) отличаются высокой электро- и теплопроводностью, жаропрочностью, которые особенно повышаются после термической обработки. Эти бронзы применяют для изготовления электродов, коллекторов электродвигателей, деталей машин контактной электросварки и т, д.  [c.240]

Присутствие даже небольшого количества С в хромистых нержавеющих сталях, а также их термическая обработка оказывают существенное влияние на коррозионные свойства металла.  [c.16]

С целью повышения коррозионной стойкости 13%-пых хромистых нержавею-Г щих сталей, у которых содержание Сг находится на границе коррозионной стой-кости, следует применять специальные режимы термической обработки, состоящие из закалки с отпуском [3, И, 24, 31]. При нагреве стали до высоких температур (950—1000° С) основные количества карбидов хрома переходят в -твердый раствор,  [c.17]

Механические свойства и термическая обработка литейных хромистых нержавеющих сталей  [c.203]


Термическая обработка. Хромокремнистая сталь по сравнению с хромистой требует более высокой температуры закалки (так как кремний сильно повышает критические точки) и поэтому обладает повышенной склонностью к обезуглероживанию.  [c.448]

Влияние материала зубчатого колеса и термической обработки на точность его изготовления. Высококачественные колёса изготовляются из хромоникелевой стали с различным содержанием никеля и хрома в зависимости от назначения детали. Зубчатые колёса, подвергающиеся цементации, часто изготовляются также из хромистой стали с содержанием углерода до 0,20 /о. Ковка заготовки увеличивает прочность зубчатого колеса и его сопротивление износу и ведёт, кроме того, к экономии инструмента. Точность нарезания колёс в этом случае также выше в силу меньших отжимов инструмента при обработке материала более однородной массы.  [c.173]

Пята шпинделя выполняется отъёмной. Материал—углеродистая или хромистая сталь термическая обработка — закалка до твёрдости Яд = 4504-500.  [c.422]

Термическая обработка существенным образом влияет на электрохимическое и коррозионное поведение хромистых сталей (табл. III-25 1П-26 III-27).  [c.172]

При использовании хромомолибденованадиевых или хромистых нержавеющих сталей термическая обработка сварных конструкций является обязательной в связи с неизбежностью образования в исходном состоянии после сварки в шве и околошовной зоне хрупких закаленных структур. В связи с большей термической устойчивостью мартенсита в этих сталях температура отпуска должна быть повышена до 700—760°.  [c.91]

При назначении режима отпуска сварных изделий из перлитных или хромистых сталей необходимо также учитывать и режим термической обработки заготовок перед сваркой. Как правило, указанные стали относятся к классу улучшаемых, получающих свои оптимальные свойства в состоянии закалки или нормализации с последующим отпуском. По существующей практике контроль свойств материалов сварных конструкций производится путем испытания образцов, вырезанных из заготовок. Для того чтобы эти свойства сохранились и в сварной конструкции, необходимо, очевидно, чтобы температура отпуска последней была бы ниже соответствующего значения температуры отпуска заготовки. В обычной практике эта разница составляет 20—40°. В связи с необходимостью отпуска сварной конструкции при температурах выше 650° это требование позволяет использовать для сварных изделий жаропрочные стали, обработанные лишь по режиму высокого отпуска. Несоблюдение его — отпуск сварной конструкции при температурах выше температур отпуска заготовок — приведет к разупрочнению стали при невозможности контролирования ее свойств. Требование обработки деталей перлитных и хромистых сталей перед сваркой по режиму высокого отпуска обусловлено также (глава П) необходимостью сохранения  [c.91]

В ряде случаев представляется целесообразным использовать для сварных изделий из перлитных и хромистых сталей режим полной термической обработки закалку с последующим отпуском. При этом обеспечивается наиболее высокая однородность сварного соединения. Данный вид термической обработки может применяться для отливок, подвергаемых крупным заваркам в целях ремонта. На сварку отливка поступает в отожженном состоянии, а после сварки деталь проходит полную термообработку по режиму для основного металла.  [c.92]

Для массивных сварных конструкций из перлитных сталей повышенной жесткости, требующих подогрева при сварке, в ряде случаев необходимым является проведение операции термической обработки изделия непосредственно после сварки, без промежуточного охлаждения изделия перед термической обработкой. Необходимость соблюдения этого условия определяется опасностью появления трещин в закаленных зонах сварного соединения, образующихся при охлаждении до 50—200° изделия, сваренного с подогревом. Проведение немедленной термической обработки без охлаждения изделия после сварки позволяет устранить закаленные зоны и, следовательно, уменьшить опасность трещинообразования. Для сварных конструкций из хромистых жаропрочных сталей большой жесткости при толщине деталей, свариваемых с подогревом в 300—400°, свыше 30—50 мм необходимо после сварки охладить изделие до 120—150°, после чего производить отпуск.  [c.92]


Изготовление цилиндров высокого и среднего давления из отливок легированных перлитных и хромистых сталей требует использования при их сварке высокого подогрева и проведения термической обработки. Для большинства конструктивных швов соединения цилиндра с патрубками, флан-  [c.109]

Термическая обработка сварных роторов включает в себя высокий отпуск при изготовлении их из перлитных или хромистых сталей или высокотемпературную стабилизацию — для аустенитных роторов. Режим отпуска или стабилизации определяется маркой свариваемой стали и имеет своими задачами снятие сварочных напряжений и устранение хрупких закаленных зон в сварном соединении.  [c.125]

Оптимальными режимами термической обработки колес из хромистых сталей являются полная термическая обработка заготовок и отпуск сваренного изделия при температуре 660—680 в течение двух часов. Другие-  [c.137]

Материалы. Изготовление. Крепежные детали рядового назначения изготовляют из углеродистых сталей (оо,2 = 40 кгс/мм ) или хромистых (< 0.2 = 70 кгс/мм ). Оптимальное содержание углерода в углеродистых и низколегированных сталях 0,4 — 0,45%. Термическая обработка закалка в масло с 750 —800"С, отпуск на сорбит (HR 35 — 40). Нагрев под закалку ведут в нейтральной атмосфере, вакууме или расплавленных интeт чe киx шлаках во избежание окисления и обезуглероживания, резко снижающего циклическую прочность. Для изготовления ответственных болтов применяют хромансили типа ЗОХГС 40ХГС (оо,2 = 90 110 кгс/мм ). В наиболее нагруженных соединениях применяют Сг — Мо стали или Ni —Сг —W стали (< 0,2 = 120 150 кгс/мм ).  [c.515]

Выбор реактивов в большинстве случаев определяется термической обработкой сталей. В общем случае пригодными оказываются травнтели для нелегированных сталей, а также реактив Вилеллы для хромистых сталей.  [c.125]

Механические свойства хромистых нержавеющих сталей ферритного, мартенсито-ферритного и иартенситного классов после оптимальной термической обработки  [c.15]

Механические свойства и режимы термической обработки хромистых теплостойких сталей и сильхромов  [c.124]

Показано [129], что простая хромистая сталь 20X13 наиболее сильно склонна к точечной коррозии. Сравнительно большое количество углерода (0,22 %) расходуется на образование карбидов хрома, что ведет к локальному обеднению матрицы хромом, повышению химической и структурной гетерогенности стали и росту ее склонности к точечному коррозионному поражению. Дополнительное легирование стали более сильными карбидообразующими элементами (молибден, ванадий, ниобий и др.) снижает ее склонность к питтинговой коррозии, так как при этом перераспределение хрома в матрице стали вследствие ее термической обработки менее заметно. Нами также показано, что закаленные мартенситные стали, подверженные отпуску при 570—600°С, обладают большей химической неоднородностью и меньшей стойкостью к питтинговой коррозии, чем те же стали после отпуска при 660-700°С.  [c.59]

Модифицированные 12%-ные хромистые стали имеют при обычном для них содержании углерода ( , 10—0,20%) двухфазную феррито-аустенитную структуру, в которой содержание ррита составляет 15—25% (реже 30—35%). Количество последнего зависит от дополнительного легирования и в меньшей степени — от термической обработки. Выделению избыточного феррита способствуют сильные карбидообразующие элементы ниобий, титан, ванадий. Закалка с весьма высокой температуры (1150—1200° С) вызывает, как правило, образование максимального количества ферритной составляющей. Наличие избыточного феррита в мар-тенситной стали приводит к структурной нестабильности и, следовательно, ухудшает ее работоспособность [13].  [c.153]

Отливки из хромистой нержавеюи1ей стали склонны к образованию подповерхностных тре цип в процессе термической обработки. Эти трещины. чалегают на глубине около 5 мм п не выходят на поверхность. Поверхность отливок получается неровной вследствие образования на ней окислов хрома. Отливки подвергаются механической обработке по всей поверхности. Обнаруженные трещины ремонтируют путем выборки металла на всю глубину дефекта и заварки.  [c.167]

В практике изготовления конструкций могут встречаться сварные соединения различных 12-процентных хромистых сталей между собой. В этих случаях целесообразно применять сварочные материалы, предназначенные для менее легированной стали. Так, например, в сварном соединении сталей 1X13 и 15Х12ВМФ между собой могут использоваться электроды типа ЭФ-13, предназначенные для сварки стали 1X13. Режим термической обработки после сварки обычно выбирается по более легированной составляющей.  [c.32]

Изготовление рабочих колес из закаливающихся при сварке хромистых сталей требует введения ряда технологических мероприятий при их изготовлении. Сварка должна производиться с обязательным подогревом изделия до 400—450 при использовании стали 1X13 и 500—550 —при стали 2X13 с последующей его термической обработкой, желательно непосредственно после сварки. Как показал опыт сварки колес, наличие подогрева при имеющейся жесткости изделия приводит к относительно небольшой его поводке, не превышающей 0,3 мм.  [c.137]


Смотреть страницы где упоминается термин Хромистые Термическая обработка : [c.10]    [c.217]    [c.217]    [c.220]    [c.226]    [c.236]    [c.279]    [c.81]    [c.321]    [c.131]    [c.437]    [c.249]    [c.176]    [c.225]    [c.91]    [c.175]    [c.392]    [c.637]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.15 , c.16 , c.18 ]



ПОИСК



Термическая обработка поковок из хромистой шарикоподшипниковой стали

Термическая обработка сварных соединений высоколегированных хромистых сталей

Термическая обработка сталей высокомарганцовистых хромистых нержавеющих



© 2025 Mash-xxl.info Реклама на сайте