Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение ванадия

По влиянию длительного старения под нагрузкой определена стабильность свойств и структуры указанных опытных плавок. Показана целесообразность применения в качестве стабилизирующего модификатора — ванадия.  [c.379]

В металлургической промышленности хром добавляется в количестве до 3V-0 к низколегированным сталям для улучшения механических свойств и повышения способности принимать закалку. Стали этого типа, которые могут также содержать другие элементы, например молибден, никель, марганец и ванадий, используются в изделиях высокой прочности — для пружин, роликовых и шариковых подшипников, штампов и рельсов. Стали, содержащие 5—6% хрома, имеют повышенное сопротивление коррозии и находят применение в нефтеперерабатывающей промышленности.  [c.886]


Краткие сведения о проявляющих веществах. Проявляющие вещества делятся на две основные группы неорганические и органические. К неорганическим проявляющим веществам относятся соли закиси железа, например щавелевокислое железо, соли ванадия, гидразина и др. В связи с плохой сохраняемостью, нестабильностью свойств и ядовитостью применение этих проявляющих веществ ограничено.  [c.168]

Большое разнообразие и сложность соединений ванадия объясняются его способностью 1) существовать в пяти валентных состояниях 2) проявлять свойства металла и неметалла 3) образовывать несколько радика лов и 4) входить в состав множества комплексных соединений, образовавшихся из ванадиевых поликислот (рис. 1). На рис. 2 показана схема основных химических и металлургических процессов переработки ванадиевых руд с целью получения химических соединений, ферросплавов и лигатур ванадия, необходимых для промышленного применения.  [c.102]

Мартенситные стали. Из сталей мартенситного класса в качестве жаропрочных нашли практическое применение стали с 11— 13% (в среднем 12%) хрома. Для повышения жаропрочных свойств стали дополнительно легируют молибденом, вольфрамом, ванадием и ниобием. Модифицированные хромистые стали в основном рассчитаны на применение в температурном интервале 560— 620° С, в котором жаропрочность и жаростойкость низколегированных сталей перлитного класса становится уже недостаточной, а использование аустенитных сталей экономически нецелесообразно.  [c.153]

Предусмотренная тем же ОСТ сталь Р отличается от стали РФ1 меньшим содержанием ванадия (0,5—0,8%). По своей природе и поведению при термообработке сталь Р не отличается от стали РФ1, но вследствие худших режущих свойств (см. ниже) применение этой стали нецелесообразно ввиду высокого содержания в ней вольфрама.  [c.455]

Резцы, изготовленные из быстрорежущей стали, впервые демонстрировались на Всемирной промышленной выставке в Париже в 1900 г. С применением этих резцов скорость резания почти в 5 раз превысила скорости, допускаемые для резцов из обычной углеродистой стали. Добавка в сталь специальных легирующих элементов (марганца, хрома, вольфрама) значительно повышала твердость инструмента и его красностойкость, т. е. способность сохранять свои рабочие свойства при нагреве, возникающем в процессе обработки. Твердость новой стали не падала даже при нагреве до красного каления (при температуре 600° С). Многочисленные опыты, проведенные в 1901—1906 гг., привели Тейлора и Уайта к заключению, что лучшим быстрорежущим сплавом является сталь с содержанием 0,67% углерода. 18% вольфрама, 5,47% хрома, 0,11% марганца, 0,29% ванадия и 0,043% кремния. Быстрорежущую сталь такого состава закаливали нагревом до очень высокой температуры (свыше 900° С) с последующим быстрым охлаждением в воде. Инструменты, изготовленные из быстрорежущей стали, вскоре получили широкое распространение.  [c.23]


Конструкционные материалы должны обладать хорошей совместимостью — свойством существовать в контакте без химических или других взаимодействий друг с другом. Это особенно важно при применении металлических теплоносителей. К таким устойчивым металлам при жидких металлических теплоносителях относятся ниобий, тантал, титан, ванадий, цирконий и бериллий.  [c.189]

Постоянное увеличение скоростных характеристик машин и оборудования, повышение надежности и долговечности их требует все более широкого применения в машиностроении новых высокопрочных материалов с повышенными физико-механическими свойствами (жаропрочных, твердых и коррозионноустойчивых металлов и сплавов). В качестве легирующих элементов для конструкционных сталей, помимо хрома и никеля, во все большей степени применяются труднообрабатываемые металлы — молибден, ванадий и т. д.  [c.115]

Еще один легирующий элемент—азот — попадает в сталь из атмосферы. Хотя азот обычно присутствует в значительно меньшем количестве, чем углерод, действие их подобно. Азот оказывает более сильное влияние на стабилизацию аустенита и упрочнение, и определенное количество его может серьезно влиять на пластичность при низкой температуре из-за выпадения нитридов при нагреве до 200° С после холодной деформации. Это явление известно как деформационное старение. Когда азот вызывает какие-либо нежелательные эффекты, его можно связать добавками ванадия, который образует с ним нитриды. Если добавки азота улучшают важные для нас свойства, содержание его может быть увеличено. Азот можно вводить при плавлении под давлением. Кроме того, азотом можно насытить поверхностные слои стали, содержащие алюминий, в процессе азотирования в атмосфере, обогащенной азотом, такой, как атмосфера диссоциированного аммиака. Кроме того, вместе с углеродом, азот может насыщать сталь при нагреве в расплавленных цианистых солях. Эти два наиболее распространенных метода создают твердый, но тонкий поверхностный слой. Азот содержится в сталях, изготовленных с применением кислородного дутья, в небольшом количестве и может быть почти полностью удален вакуумной обработкой.  [c.51]

Номенклатура марок мартенситных сталей, содержащих до 8 % Сг (в соответствии с ГОСТ 20072—74), и рекомендации по их применению приведены в табл. 9, а механические свойства — в табл. 10. Для обеспечения высоких, стабильных в процессе длительной службы механических свойств эти стали дополнительно легируют вольфрамом, молибденом, ванадием.  [c.398]

По технологическим свойствам металлов этой группы надо отметить следующие. Тантал, ниобий — пластичные металлы, хорошо прокатываются и свариваются, что позволяет использовать их в качестве облицовочного и плакирующего материала. Молибден, вольфрам и ванадий — малопластичные металлы, что затрудняет (но не исключает) их практическое применение как коррозионностойких материалов.  [c.298]

Марганец, бор и ванадий способствуют образованию силицидных покрытий, склонных к самозалечиванию по механизму, описанному выше. Кроме того, марганец повышает термостойкость покрытий при нагреве до 1500° С [118, 119]. Ниобий и его сплавы с силицидными покрытиями, легированные марганцем, находят применение в газотурбинных двигателях [119]. Примером подобного рода комплексных покрытий, защищающих ниобий от окисления при 1300° С в течение не менее 200 час. и обладающих свойством самозалечивания, является покрытие, содержащее 30—50% Si, 5—25% V-fMn, а также не менее трех из следующих элементов Та и Nb — до 50%, W, Мо, Сг, Ti, Zr и А1 3—25%, В 3—15% [121].  [c.252]

Механические свойства. Как конструкционные материалы в авиастроении используют сплавы с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение имеют сплавы титана с алюминием, хромом, ванадием и углеродом.  [c.289]

Решениями XXV съезда КП(Х предусматривается дальнейший рост производства цветных металлов и сплавов, продукции химической промышленности, извлечения металлов из руд, комплексность использования сырья, совершенствование наиболее эффективных технологических схем. В связи с этим хлор и его соединения в последние годы находят все более широкое применение. Реакционная способность хлора, разнообразие свойств его соединений обусловливают создание новых химических и химико-металлургических производств. Из всех методов получения титана, ванадия, ниобия, тантала, циркония, вольфрама, молибдена и других металлов метод хлорирования принят промышленностью в качестве основного. Этим методом можно наиболее полно извлекать из перерабатываемого сырья все ценные составляющие и получать металлы высокой чистоты. В ближайшее время начинается промышленное применение хлора для переработки фосфорсодержащих руд с целью извлечения из них фосфора, а также в процессах получения олова, марганца,, хрома, никеля, кобальта.  [c.4]


Легированная сталь наряду с обычными примесями содержит легирующие элементы, главным образом определяющие ее свойства. К легирующим элементам относят хром, вольфрам, ванадий, молибден, никель, а также кремний и марганец в большом количестве и др. Легированная сталь обладает свойствами, которых нет у углеродистой стали, и она не имеет ее недостатков. Применение легированной стали сокращает расход металла,  [c.65]

Разработаны, новые материалы, представляющие собой сочетание металлической основы с дисперсными включениям тугоплавких окислов и применяющиеся как новые жаропрочные материалы, параметры которых более высокие, чем у чистых металлов и сплавов на их основе. В последнее время на основе тугоплавких металлов (ванадия, ниобия, молибдена и вольфрама) созданы сплавы, которые позволяют значительно расширить температурные интервалы применения новых жаропрочных материалов. И, наконец, следует отметить материалы с особыми физическими свойствами, которые создаются в условиях высоких и сверхвысоких давлений и температур, например искусственный алмаз, новые модификации простых веществ и различные соединения, способные в этих условиях менять характер химической связи. При исследовании ЭТИХ материалов успешно применяют новые методы, позволяющие определять строение и  [c.4]

Развитие многих отраслей современной техники в значительной степени зависит от успешного применения для ответственных деталей машин и конструкций защитных покрытий, которые предохраняли бы рабочие поверхности от различных видов износа и коррозии в агрессивных газовых и жидких средах в широком интервале температур. Достаточно отметить, что применение конструкционных высокотемпературных материалов на основе тугоплавких металлов — молибдена, вольфрама, тантала, ниобия, ванадия для ракетной и космической техники, авиации, ядерной энергетики немыслимо без разработки и использования соответствующих защитных покрытий. Обладая необходимыми механическими свойствами при высоких температурах (1000° С и выше), эти материалы катастрофически окисляются уже при температурах выше 700—800° С. Попытки решить проблему обеспечения окалиностойкости тугоплавких металлов и их сплавов металлургическим путем, т. е. подбором легирующих добавок, пока практически не привели к серьезным успехам. В то же время применение защитных покрытий во многих случаях оказалось эффективным. В настоящее время общепризнанно, что применение покрытий для защиты высокотемпературных материалов от газовой коррозии — наиболее перспективный и реальный путь решения этой проблемы [71, 72].  [c.6]

Карбидные покрытия не только резко увеличивают сопротивляемость стали различным видам износа, но в ряде случаев существенно повышают их жаростойкость и коррозионную стойкость. Это прежде всего относится к карбидным покрытиям, полученным при диффузионном насыщении хромом, титаном, ванадием и ниобием. В силу экономических соображений, простоты и надежности технологии наиболее полно изучен и нашел широкое практическое применение процесс диффузионного хромирования сталей. Современное состояние уровня исследований по технологии диффузионного хромирования, свойствам покрытий и областям их использования подробно рассмотрено в монографии [6].  [c.151]

Однородность сплава Fe—Со—2 V в большой степени определяется его чистотой. Примеси ухудшают магнитные свойства сплава, нарушают кристаллическую структуру, вызывая неоднородность намагниченности. Показателем степени чистоты является коэрцитивная сила. Гоулд и Веннн [3S] получили для сплава Fe—Со—2V минимальные значения коэрцитивной силы Не путем применения очень чистых шихтовых материалов и тщательного переплава [42, 43]. Келлер и Гилман, [39] получили сплавы Fe—Со и Fe—Со—2V с минимальными значениями Не путем применения зонной плавки с последующим отжигом образцов в водороде. К существенному росту Не приводит наличие в сплавах остаточного углерода [41]. При содержании С>0,01% в сплавах Fe—Со—2V, как правило, присутствуют карбиды ванадия, отрицательно влияющие на магнитные свойства и однородность.  [c.233]

В настоящее время в США цена чистого ванадия, полученного восстановлением, составляет 66—110 долл. за 1 кг в зависимости от вида и качества изделий. Хотя эта цена гораздо ниже цены 4000 долл. за 1 кг в 1950 г., когда ванадий получали по способу Мардена и Рича, она все еще является высокой по сравнению с цепами на другие чистые металлы промышленного значения. Цены на ванадий, очевидно, могут быть снижены при расширении масштабов его производства, но дороговизна исходного сырья и необходимость строгого соблюдения технологического режима исключают возможность значительного снижения цен. По всей вероятности, в люоых случаях промышленного применения ванадия его высокая стоимость должна ыть оправдана уникальными свойствами этого металла.  [c.106]

Чистый ковкий ванадий лишь сравнительно недавно стали получать в количествах нескольких сот килограммов в сутки, и возможности его применения в различных областях ен ,е недостаточно изучены. Ванадий представляет интерес как материал для ядерных реакторов на быстрых нейтронах, так как он обладает малым поперечным сечением захвата нейтронов, малым поперечным сечением неупругого рассеяния нейтронов, большой прочностью при повышенных температурах и высокой теплопроводностью. Ванадиевая фольга применяется в качестве подслоя между стальными и титановыми листами при упаковке чистого титана в стальную обаючку. Применение ванадия благодаря его уникальным свойствам в специальных областях вместо других металлов ограничивается его высокой стоимостью, и он применяется лишь в тех случаях, когда его нечем  [c.120]

Высокие режущие свойства быстрорежущих сталей обеспечиваются легированием сильными карбидообра-зующимн элементами (вольфрамом, молибденом, ванадием), элементами, повышающими температуру (а- v) f P вращения (кобальтом, алюминием), и применением специальной термической обработки, заключающейся в закалке с высоких температур (1200—1300 О и отпуске, вызывающем дисперсной ное твердение.  [c.606]


Важность проблемы создания и применения Н0 вых химически стойких металлических материалов в различных отраслях. нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевьгм ресурсам и возможностям металлургической иромышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах.  [c.65]

Из всех изучавшихся систем наибольший срок службы отмечался у Si—В покрытия на сплаве Та — 30Nb — 7,5V (рис. 119). Однако при повышенном содержании бора в покрытиях на границах зерен основы появлялись интерметаллические фазы, богатые бором, что вызывало ее охрупчивание. Весьма высокие защитные свойства присущи также покрытиям системы Si—V на сплаве Та — 10W, которые могут быть еще улучшены подбором наиболее подходящего активатора и применением чистого ванадия. Модифицирование марганцем не улучшает свойств силицидного покры-  [c.318]

В отношении многих металлов часто применяют термин редкие (в смысле малоприменяемые). Однако редкость их может вызываться целым рядом причин малой распространенностью в земной коре рассеянностью их присутствия в рудах и минералах при значительном в целом содержании в земле трудностью их выделения из руды или отделения от других металлов еще недостаточной изученностью свойств, ограничивающей применение. К числу таких редких металлов принадлежат литий, рубидий, цезий, бериллий, галлий, индий, таллий, германий. Из элементов побочных подгрупп к редким принадлежат скандий, иттрий, лантан, актиний, цирконий, гафний, ванадий, ниобий, рений. К числу редких, а точнее рассеянных, принадлежат и лантаноиды (церий и др.), на что указывает их старинное название редкоземельные элементы ( земля — старинное название оксидов).  [c.75]

Хромистые стали с 4—6% Сг могут считаться только полужаростой-кими. Они не обладают нержавеющими свойствами и кислотостойкостью более высоколегированных хромистых сталей. Стали этого класса вследствие своей относительной доступности и повышенной, по сравнению с углеродистыми сталями, коррозионной устойчивости, высокой технологичности и повышенной прочности широко применяются в нефтяной промышленности для изготовления крекинг-установок, а также в котлотурбо-строении, для аппаратуры, работающей под давлением при повышенных температурах, для пароперегревателей и других деталей. Содержание углерода в них колеблется от 0,15 до 0,25%, отдельные марки содержат также небольшие присадки Мо, Мп, V, 51, Т1, Ш, А1. Стали, содержащие С,5% молибдена и, кроме того, небольшие присадки ванадия, обладают повышенной устойчивостью против водородной коррозии и поэтому находят применение в азотной промышленности для установок синтеза аммиака. Так как эвтектоидная точка для содержания хрома 4—6% лежит при 0,5—0,6% углерода, то эти стали относятся к доэвтектоидному классу, т. е. обладают ферритно-перлитной структурой после отпуска (860 ). Твердость их в этом состоянии — около 150—170 по Бринеллю. При нагреве выше критических температур и охлаждении на воздухе они частично закаливаются, приобретая твердость порядка 300 единиц по Бринеллю. Типичной маркой подобных сталей является сталь Х5М, содержащая <0,15% С,-<0,5 51, <0,6 Мп, 4—6 Сг, 0,5—0,6 Мо. Стали этого  [c.481]

Эффективными методами 1юв1.ииения износостойкости и механических свойств сталей и чугунов являются термическая и химикотермическая обработка(цементация, азотирование, нитроцементация, цианирование, сульфидирование, борирование), легирование хромом, никелем, марганцем, вольфрамом, молибденом, ванадием. Применение названных методов позволяет существенно изменять структуру, а следовательно, и свойства сплавов, особенно свойства (юверхностных слове, в желаемом направлении.  [c.14]

Электропроводящее стекло (полупроводниковое) — стекло, обладающее свойствами полупроводников благодаря включению в состав элементов или окислов, придающих стеклу электропроводность. Различают халь-когенидные стекла, в состав которых входят в различных сочетаниях сплавы сульфидов, селенядов и теллуридов, а также мышьяка, висмута и других элементов и оксидные ванадиевые стекла на основе окислов ванадия и фосфора с добавками других окислов. Они находят широкое применение в качестве термисторов, светофильтров и фотосопротивлений.  [c.274]

Опыт применения двухфазных (а + у)-сплавов показал большое рассеяние свойств, причины которого неясны. Исследование характера разрушения железомарганцевых а-сплавов проводили на бинарных и легированных составах. Механические свойства бинарных сплавов с 7 и 10% Мп подробно исследованы ранее (см. гл. I, III) и взяты для сравнения. В качестве легирующих были использованы ванадий и ниобий. При этом ожидали улучшения вязких свойств по двум направлениям через измельчение зерна и повышение чистоты в микрообъемах металла [153]. Сведения по благоприятному влиянию этих элементов на фазовый состав и далее на пластичность и вязкость железомарганцевых сплавов были получены ранее на е-спла-вах [153]. Кроме того были воспроизведены сплавы 20Г7Т и 17Х2Г8МФ, известные из литературных источников [13, 184].  [c.225]

Чистый пластичный ванадий практически не нашел пока широкого применения в технике, что обусловлено недостаточной изученностью его свойств. В настоящее время ванадий используется в промышленности как легирующая добавка в качёственных сталях и твердых сплавах [36]. Благодаря особым физическим свойствам он может и частично уже используется в ядерной энергетике. Из-за способности неограниченно растворяться в целом ряде тугоплавких металлов без образования хрупких интерметаллических фаз, ванадий применяют в качестве высокотемпературного припоя [62, 36].  [c.89]

Дисперсионное и дисперсное упрочнения сплавов ванадия до последнего времени не находили широкого применения. Это, видимо, можно объяснить тем, что твердорастворное легирование ванадия, особенно при высоком содержании легирующих элементов, обеспечивает упрочнение, сохраняющееся до высоких для ванадия рабочих температур (—1000° С) без резкого снижения его низкотемпературной пластичности (рис. 116) [1, 2]. Вместе с тем стали появляться работы по исследованию закономерностей формирования гетерофазных структур в системах V—Meiv—С [10,11] по влиянию добавок углерода и азота на прочностные свойства сплавов ванадия, содержащих один или несколько из элементов цирконий, ниобий, титан [12, 13, 2]. Сведения пока очень ограниченные, одна-, ко уже сейчас прослеживается закономерность в изменениях свойств  [c.278]

Влияние основных компонентов на свойства порошковых сталей достаточно хорошо описано в литературе [24, 25], Однако технико-экономические факторы накладывают определенные ограничения при использовании легирующих элементов при производстве порошковых сталей. Вольфрам и ванадий являются дорогостоящими элементами и введение их в порошковую сталь экономически нецелесообразно. Учитывая их определенную ограниченность по возможности применения в массовом производстве можно отметить, что серийная технология производства порошковых сталей с использованием порошков вольфрама и ванадия экономически и технологически невыгодна. Применение порошка алюминия в смеси с железным порошком не приводит к существенному улучшению свойств спеченных сталей из-за высокого сродства алюминия к кислороду и малой растворимости алюмния в железе при температурах спекания — эти факторы отрицательно влияют на физико-механические свойства порошковых сталей.  [c.49]


Основным конструкционным материалом для производства сварных конструкций в течение длительного периода являлась малоуглеродистая сталь (типа Ст.З, Ст.2 и др.), характеризующаяся гарантированной, но невысокой прочностью, высокой пластичностью и хорошей технологичностью, в том числе и свариваемостью. Немаловажное значение имеет и относительная дешевизна этой стали, не содержащей специальных легирующих элементов. Малоуглеродистая сталь наряду с указанными достоинствами имеет и ряд недостатков, из которых важнейшими являются относительно низкая прочность, пониженное сопротивление хрупкому разрушению и повышенная чувствительность к механическому старению. Последние два свойства в значительной мере определяются степенью раскисленности металла (кипящая, по-луспокойная и спокойная) даже лучшая из них — спокойная малоуглеродистая сталь характеризуется невысокими значениями ударной вязкости при минусовых температурах, что в ряде случаев ограничивает область ее применения. Интенсивными исследованиями в последние годы доказано, что применением специальных технологических приемов (регулируемая прокатка, термическое упрочнение и др.) или дополнительным введением в металл модифицирующих элементов (ниобий, ванадий и др.) можно заметно улучшить качественные характеристики малоуглеродистой стали, в том числе и ее сопротивление хрупкому разрушению. Можно преодолеть недостатки малоуглеродистой стали и путем перехода на низколегированные стали (стали повышенной прочности), повышенная прочность и сопротивляемость хрупким разрушениям у которых достигается присадкой легиру ющих элементов и измельчением структуры.  [c.4]

Следует отметить, что относительная дефицитность и высокая стоимость феррониобия ограничивают его применение для низколегированных сталей. В то же время благодаря вводу в строй Качканарского месторождения значительно возросли ресурсы ванадия, что позволяет более широко его использовать. За последние годы разработан и освоен ряд ванадийсодержащих марок низколегированных сталей, обладающих комплексом высоких свойств (15ГФ, 17Г2СФ, 18ХГ2СФ и т. д.).  [c.133]

Коэрцитивная сила Щ от латинского соегс11ю — удерживание) — напряженность магнитного поля, необходимая для полного размагничивания предварительно намагниченного до насыщения ферромагнетика (получения 5 = О по предельной петле гистерезиса). Магнитные свойства ферромагнетиков (в первую очередь сталей) определяются их химическим составом. Так, введение никеля, марганца, углерода, азота и меди уменьшает начальную магнитную проницаемость )Хнач и повышает коэрцитивную силу Одновременное введение кремния, хрома, молибдена, ниобия, вольфрама и ванадия увеличивает л,,ач и уменьшает Между начальной магнитной проницаемостью и коэрцитивной СИЛОЙ Д. ДЛЯ стэлсй существует обратно пропорциональная зависимость. Так, для диапазона значений = 0, 2...5 кА/м и )1 = 10...270 установлена зависимость ( нач (0Л7Яг)- (см. Богачева Н. Д. Расширение возможностей применения метода коэрцитивной силы // В мире неразрушающего контроля. — М., 2005 г.—№ 2. — С. 8—10).  [c.102]

Марка РО, не содержащая ванадия (0,2—0,6 /о ванадия предусматривалось факультативно), обладала неудовлетворительными режущими свойствами, что делало бессмысленным её применение. Обычно при термической обработке (закалка и отпуск инструмента) стали РО получалась пониженная твёрдость (60—61 единиц по шкале С Роквелла), что, естественно, влекло за собой и понижение режущих свойств. Можно, конечно, получить на стали РО твёрдость после закалки и высокого отпуска (Е50°) выше 62 единиц, по Роквеллу по шкале С, но для этого уже требуется применение при закалке более резких охладителей, чем масло (например возможно применить водный раствор жидкого стекла соответствующей концентрации). Применение более резкого, чем масло, охладителя связано с опасностью образования трещин и с повышенными деформациями, а потому не всегда допустимо.  [c.392]

В дальнейшем с применением экспериментально-расчетного метода определения содержания МЛЭ в металле и ускоренного безобразцового метода определения его механических свойств по показателям твердости [24] в НПО ЦНИИТмаш была выполнена большая работа по исследованию влияния микролегирования ванадием, титаном, цирконием, церием и бором на структуру и механические свойства стали типа 10ГН2М после двух видов ее термической обработки. Установлено, что наиболее благоприятное влияние на эту сталь оказывает церий. Определен диапазон его оптимального содержания в металле. В последнее время церий используют при изготовлении стали. Некоторые результаты этого исследования приведены на рис. 68 и 69. Без применения металла ПС такая работа была бы невыполнима по точности и объему.  [c.65]

Новым металлическим материалом, занимающим видное место в машиностроении, являются титан и сплавы на его основе. Это серебристо-белый металл с температурой плавления 1660° и удельным весом 4,5 г/сж . Технический титан высокой чистоты содержит не более 0,1% примесей (Ре Мп А1 С 51 N1), имеет невысокую прочность, хорошую пластичность, по свойствам приближаясь к чистому железу с углеродом образует очень твердые карбиды титана. Татан удовлетворительно обрабатывается давлением (ковкой, прессованием, прокаткой), сваривается дуговой сваркой в атмосфере защитных газов. Имеет высокую стойкость против коррозии в пресной, морской воде и в некоторых кислотах. Примеси резко повышают прочность, одновременно снижая пластичность титана. Изготовляемый в СССР технический титан, содержащий до 0,5% примесей имеет 6в =55—75 кГ1мм 6 = 20—25%. К к конструкционные материалы Б машиностроении применяются сплавы титана с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение  [c.191]

Количество новых сплавов непрерывно растет. Особенно большие возможности открылись перед создателями новых материалов благодаря широкому применению тугоплавких и редких металлов циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, рения, редкоземельных металлов, которые обладают уникальными физичe ки ш свойствами.  [c.5]


Смотреть страницы где упоминается термин Свойства и применение ванадия : [c.400]    [c.179]    [c.198]    [c.178]    [c.118]    [c.504]    [c.174]    [c.81]   
Смотреть главы в:

Металлы и их заменители  -> Свойства и применение ванадия



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Применение ванадия



© 2025 Mash-xxl.info Реклама на сайте