Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теории фазовых превращений

В данной главе рассмотрена теория термической обработки стали на основе общей теории фазовых превращений переохлажденных систем, кратко описанных в гл. V п. 10. Перед изучением данной главы рекомендуем повторить материал в гл. V п. 10.  [c.235]

Автор вместе с группой товарищей в течение ряда лет занимается исследованием вопросов, имеющих отношение к проблеме связи структуры и свойств материалов. Вместе с этим он читает аспирантам курс физического металловедения. Изложение вопросов, так или иначе затрагивающих вышеуказанную проблему, и составляет основу книги. Последовательно рассмотрены металлическая связь и ее влияние на свойства металлов, строение атомов и межатомное взаимодействие, дефекты структуры, диффузия и теория фазовых превращений, некоторые конкретные процессы, формирующие конечные свойства металла полигонизация, старение, мартенситное превращение, возможности достижения высокой прочности, включая композиционные материалы, жаропрочность, поведение металлов в глубоком вакууме и, наконец, некоторые возможности использования ядерных процессов для исследования металлов. Где это возможно, делается акцент на вопросах связи строения и свойств.  [c.8]


Частичное решение этой основной задачи во многом определяется достижением в фундаментальных областях науки о металлах, в таких как теория строения металлов и сплавов, теория фазовых превращений и пластической деформации, базирующихся на основных положениях физики твердого тела. Именно на основе достижений в области науки о металлах разрабатываются новые составы сталей, необходимые для народного хозяйства, и новые технологические процессы термической обработки в условиях металлургического и машиностроительного производств. Несомненно, что развитие теории строения стали, технологических процессов ее обработки, обеспечивающих повышение уровня их технологических и механических свойств, требует создания новых и совершенствования известных экспериментальных методик исследования строения металлов и методов контроля качества металлопродукции.  [c.447]

Рассмотрена теория фазовых превращений в сплавах на основе марганца. Показано влияние различного фазового состава (а, г, у) на структуру, физические и механические свойства. Изложены результаты исследования механических свойств, характеристик сопротивления вязкому и хрупкому разрушению. Представлены последние достижения советских и зарубежных ученых в области исследования и использования железомарганцевых сплавов в качестве материалов, обладающих комплексом свойств, недоступных сплавам других систем легирования немагнитность, инварный эффект, эффект памяти формы, низкий порог хладноломкости, сверхпластичность, высокая демпфирующая способность.  [c.2]

Авторами сделана попытка на основе общей теории фазовых превращений и технологической прочности при сварке классифицировать существующие количественные и качественные методы испытания металлических материалов на свариваемость и обосновать рациональные области их применения. Для этого в монографии кратко изложены основные закономерности изменения структуры и свойств металлических сплавов при сварке и обоснованы критерии выбора методов их испытания на свариваемость, технологии и режимов сварки и последующей термической обработки. Рассмотрены методы оценки изменения структуры и свойств в зоне термического влияния основного  [c.5]

В монографии на основе современных представлений в области теории фазовых превращений и технологической прочности при сварке проведен анализ и дано научное обоснование методов и критериев оценки свариваемости металлов.  [c.7]


Как отмечает Ю. А. Михайлов, в свете термодинамики необратимых процессов и новых теоретических и экспериментальных данных были сформулированы дифференциальные уравнения молекулярного и молярно-молекулярного переноса при наличии фазовых превращений. В отличие от прежней теории теплопроводности и диффузии в основу математической модели процессов положены системы, а не отдельные уравнения в частных производных. Так, молекулярный тепло- и массоперенос в дисперсных средах описывается системой уравнений  [c.245]

Новая техника выдвинула трудную задачу построения теории теплообмена в сверхзвуковых потоках с учетом химических и фазовых превращений вещества. В ряде работ из этой области приводятся расчетные соотношения, полученные на основе упрощений и грубых приближений. Большинство исследователей при решении нестационарных задач по теплообмену использует замкнутую систему уравнений аэродинамики и уравнений кинетики химических превращений вещества. Однако не всегда эта замкнутая система уравнений является корректной. Например, часто приравнивают конвективный перенос вещества к скорости химической реакции, менаду тем как первое понятие относится к классу потоков и, следовательно, связано, с поверхностями одинакового потенциала -переноса, а второе характеризует изменение в объеме и по существу всегда скалярная величина.  [c.16]

Основы теории жаропрочности. На поведение металла при высоких температурах оказывает влияние ряд накладывающихся друг Ha- друга процессов, например, пластическая деформация и упрочнение вследствие наклепа, разупрочнение благодаря возврату первого рода, полигонизация, рекристаллизация, диффузионные процессы и фазовые превращения.  [c.393]

Теория и практика создания высокопрочных металлических сплавов свидетельствует о перспективности использования комбинированных способов воздействия на процессы структурообразования, а отсюда и на свойства этих материалов., В прогнозах на 1990—2000 гг. специалисты разных стран указывают, что в основе производства больших масс высокопрочных металлических материалов будет лежать совмещение процессов пластической деформации с фазовыми превращениями.  [c.14]

Фазовый переход в интервале температур Д Т вызывается разностью химических потенциалов двух фаз, В соответствии с теорией гетеро-фазных превращений возникновение новой фазы в матрице старой происходит благодаря зародышеобразованию и росту новой фазы [62]. Такого типа структуры рассматривались в 1,3, а переход от одной фазы к другой представлен на рис. 1.2. Зависимости проводимости а от концентрации /п/ и проводимости фаз о,- (г = 1,2) рассматривались в гл. 2 на основе теории перколяции и количественно описаны формулами (2,23). Если бы удалось найти и увязать концентрацию те,- фазы i с температурой [т/ = т,- (Г)], то объединение двух последних функций позволило бы получить зависимость проводимости a=f pi, Т) температуры в условиях структурного фазового перехода. Такова общая схема решения задачи, а основная трудность при этом связана с количественным описанием процесса возникновения и роста зародышей новой фазы в матрице старой.  [c.150]

В публикуемом выпуске рассмотрена теорий кристаллизации металлических расплавов и фазовых превращений в твердом состоянии изложены основы металлургической термодинамики, учения о диаграммах состояния и теории диффузии дан обзор современных металлографических методов исследования описано влияние примесей на структуру и свойства чистых металлов.  [c.4]

Термической обработкой металлов и сплавов называют совокупность операций нагрева, выдержки и последующего охлаждения, в результате которых изменяются структура металлов и в связи с этим их свойства (прочность, твердость и др.). В основе теории термической обработки лежат факторы фазовых и структурных превращений, которые протекают при нагреве и охлаждении металлов и сплавов.  [c.18]

Основное внимание в книге уделено методам оценки изменений структуры и механических свойств сварных соединений. В соответствующих разделах кратко рассмотрены вопросы теории фазовых и структурных превращений, технологической прочности при сварке, различных видов хрупкого разрушения сварных соединений. Сформулированы критерии оценки свариваемости, на основе которых выбирают способы, технологию и режимы сварки.  [c.2]


Д. К. Чернов в работе, опубликованной в 1868 г., показал, что в стали в твердом состоянии при ее нагреве (или охлаждении) до определенных температур (впоследствии названных критическими точками) происходят фазовые превращения, вызывающие значительные изменения свойств стали. В 1878 г. им были изложены основы современной теории кристаллизации металлов. Эти и последующие работы Д. К. Чернова создали фундамент современного металловедения и термической обработки стали.  [c.7]

Создатель уральской школы металловедов-термистов. Установил основные закономерности кинетики фазовых превращений в стали и влияние на нее различных факторов. Создал основы современной теории закалки и отпуска стали.  [c.123]

Основы научного металловедения были заложены великими русскими. металлургами П. П. Аносовым (1799—1851) и Д. К. Черновым (1839—1921). П. П. Аносов впервые применил микроскоп для исследования структуры металлов, установил связь строения и свойств стали, разработал научные принципы получения стали высокого качества, раскрыл секрет производства булата. Д. К. Чернов, работавший в Петербурге на Обуховском заводе, открыл существование критических температур фазовых превращений в стали (критических точек) и их связь с содержанием углерода. Он заложил основы создания диаграммы сплавов железо— углерод, являющейся важнейшей в металловедении. Им была разработана теория кристаллизации металлов и термической обработки стали. По словам академика А. А. Байкова, значение Д. К. Чернова для металлургии соизмеримо со значением Менделеева Д. И. для химии.  [c.49]

В настоящее время как часть курса Термодинамика и статистическая физика он включен в учебные программы университетов. Наряду с этим он широко используется в ряде специальных дисциплин в теории переноса, механике сплошной среды, физике твердого тела, биофизике и других. Имеется уже обширная литература по термодинамике необратимых процессов, посвященная изложению ее феноменологических и статистических основ. Вместе с тем при изучении и активном овладевании термодинамикой необратимых процессов ее теоретическая схема лучше всего раскрывается в решениях конкретных термодинамических задач, когда наглядно проявляется одно из основных достоинств аппарата этого раздела теоретической физики — возможность изучения явлений в их взаимной связи. Поэтому настоящая книга была задумана с целью иллюстрации методов термодинамики необратимых процессов на основе тематически подобранных задач. Для этого в книгу включено более ста задач по общим и специальным вопросам линейной и нелинейной термодинамики необратимых процессов, а также по вопросам, охватывающим широкий круг явлений переноса энергии, массы и импульса в термодинамических системах, осложненных фазовыми превращениями, вязким и пластическим движением среды, диссипацией энергии в газах и плазме, релаксационными явлениями и химическими реакциями в магнитном поле. Книга содержит много оригинальных задач, возникших в связи с недавними исследованиями в различных областях физики. Большинство задач, и среди них задачи проблемного характера, даны с решениями, остальные приводятся с указаниями и ответами. К ряду задач даются комментарии, поясняющие историю и значимость соот-  [c.4]

В основе теории термической обработки лежат фазовые и структурные превращения, протекающие при нагреве и охлаждении мегаллов и сплавов. Эти превращения характеризуются определенными критическими точками. При медленном нагреве от комнатной температуры до 727 С в сплаве I фазовых изменений не происходит (рис. 26). При температуре 727"С перлит превращается в аустенит (точка а). Точку а на диаграмме называют нижней критической точкой и обозначают Ас, (при охлаждении - Аг). Буквы сиг  [c.66]

В I эта проблема разрешается на основе концепции перестраиваемого потенциального рельефа. Показано, что динамическая компонента вектора смещений описывает колебания атомов в неизменном рельефе, а смещение его минимумов при удалении от равновесия деформацию превращения кристаллической решетки. При этом оказывается ( 2), что переход типа мартенситного превращения не может быть сведен к обычному фазовому переходу. Наиболее адекватным его представлением является синергетический подход, который сводится к теории Ландау только в адиабатическом приближении, отвечающем диссипативному режиму эволюции системы.  [c.113]

В предлагаемом читателю труде предпринята попытка систематизировать, сравнить и критически оценить наиболее распространенные способы испытания свариваемости металлов. В связи с этим кратко рассмотрены теория технологической прочности, фазовые и структурные превращения, а также хрупкая прочность сварных соединений и сформулированы критерии оценки свариваемости, на основе которых в настоящее время принято выбирать способы и технологию сварки.  [c.10]

Русская наука богата выдающимися исследованиями в области теории сплавов, теории фазовых превращений и теории термической обработки сплавов. Если говорить о научных основах современных литейных алюминиевых сплавов, то нужно вспомнить прежде всего о работах выдающихся металловедов, занимавщихся исследованиями диаграмм состояния, вопросами кристаллизации сплавов, вопросами термической обработки сплавов.  [c.80]

Лит. Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974 Чуистов К. В., Старение металлических сплавов. К., 1985. В. А. Финкелъ. МОДУЛЯТОРЫ СВЕТА — устройства для управления параметрами световых потоков (амплитудой, частотой, фазой, поляризацией). Простейшие амплитудные М. с.— механич. прерыватели светового луча, в качестве к-рых используют вращающиеся и колеблющиеся заслонки, призмы, зеркала, а также вращающиеся растры. Однако быстродействие и надёжность таких М. с. невелики. Наиб, широкое практич. применение получили М. с. на основе физ. эффектов, при к-рых внеш. поля меняют оптич. характеристики среды, таких, как влектрооптические Поккельса эффект и Керра аффект, магнитооптический Фарадея эффект, фотоупругость и сдвиг края полосы поглощения Келдыша — Франца эффект).  [c.179]


Последнее время значительно возрое интерес к получению наноструктурных керамических материалов (размер зерна < 100 нм) с уникальными механическими свойствами. Низкотемпературная пластичность и повышенная по сравнению с монокристаллом твердость обнаружены у диоксида титана [6, 25] для диоксида тдиркония, стабилизированного оксидом иттрия, зафиксировано явление сверхпластичности [25]. Для объяснения эффекта сверхпластичности керамики были разработаны соответствующие модели как в рамках теории дислокаций, так и основанные на теориях фазовых превращений [12]. Предложена модель, основанная на представлении о том, что поли-кристаллический материал является, по существу, композитом, состоящим из материалов объема и границ зерен, и свойства такого материала формируются на основе свойств его компонентов согласно правилу смесей. Количественные оценки показали, что доминирующий вклад в свойства нанокерамического материала дают границы, а не объем зерен, что привело к новому пониманию роли состава, состояния и свойств межзеренной фазы [12].  [c.305]

В кииге изложены узловые вопросы фиаики твердого тела межатомные взаимодействия, основы электронной теории твердого тела, симметрия к структура кристаллов, динамика кристаллической решетки, основные представления физики реальных кристаллов и аморфных материалов, фазовые превращения, физические свойства твердых тел. В отличие от других книг по физике твердого тела пособие начинается с вопросов образования твердых тел (межатомных взаимодействий и энергии связи). Это облегЧ1ает восприятие материала.  [c.2]

Поскольку теория идеальных газов не может объяснить фазовые превращения газа и жидкости, она не в состоянии установить и границы области фазовых переходов и, в частности, параметры кригической точки. Из уравнения Клапейрона, например, видно, что ни на одной из изотерм не имеется точки, в которой первая и вторая производные (dpldv)T и д р1ди )т обращались бы в нуль, т. е. параметры критической точки на основе этого уравнения не могут быть определены.  [c.193]

В основу теории термической обработки деформированного металла положено описание полиморфных. превращений, отдыха , полиго-низации и рекристаллизации. Для объяснения этих явлений предложен ряд гипотез, одна из которых - необходимость возникновения зародышей новых зерен при рекристаллизации и зародышей новой фазы при полиморфных и фазовых превращениях. Размер их составляет несколько межатомных расстояний, а образуются они синхронным перескоком атомов в новые равновесные положения.  [c.119]

В соответствии с др. теориями, физич. природа процесса усталости отлична от природы статич. наклепа. Образование микроскопич. трещин при циклич. нагрузках рассматривается в этом случае как процесс постепенного ослабления межатомных связей и развития необратимых повреждений в определенных участках структуры (напр., на границах мозаичных блоков). Модель неоднородного упруго-пластич. деформирования конгломерата случайно ориентированных кристаллов послужила основой для теорий усталостного процесса как в детерминированной, так и в вероятностной трактовке. При напряжениях, не превосходящих предела текучести металла, усталостные процессы связаны лишь с явлениями местной пластич. деформации, не проявляющейся макроскопически, и рассматриваются как квази-упругие. Числа циклов, необходимые для усталостного разрушения при таких уровнях напряженности, измеряются сотнями тыс. и млн. При напряжениях, превосходящих предел текучести, явления усталости сопровождаются макросконическими пластич. деформациями и рассматриваются как упруго-пластические. Число циклов, необходимое для разрушения в этой области, измеряется сотнями и тысячами. В зависимости от условий протекания процесс У. может также сопровождаться фазовыми превращениями в металлах. Так, при новы-шенных темп-рах происходит выделение и перераспределение упрочняющих фаз при переменном нагружении, что иногда приводит к ускоренному ослаблению границ зерен, и при длительной работе трещины усталостного разрушения возникают в этом случае на границах зерен. Физико-химич. превращения в структуре наблюдались также и при комнатной темп-ре при циклич. напряжениях выше предела У. Стадия усталостного разрушения, связанная с развитием трещины, возникает на разных этапах действия переменных напряжений. При большой структурной неоднородности, свойственной, например, чугунам, в местах включений графита система микротрещин возникает задолго до развития магистральной трещины, приводящей к окончательному усталостному разрушению. Для структурно более- однородных металлов, напр, конструкционных сталей, образованию отдельных микро-, а потом макротрещин предшествуют длительно накапливающиеся изменения, и трещины возникают на относительно поздних стадиях, развиваясь с нарастающей скоростью.  [c.383]

Несмотря на значительные успехи теории дислокаций, доминирующей в большинстве современных физических теорий пластичности, до сих пор не удалось дать сколь-нибудь приемлемое объяснение эффекту пластичности превращения на основе дислокационно-атомистического представления. Общие формальные соображения такн е мало что разъясняют. Между тем вопрос создания теории столь широко распространенного явления диктуется не только требованиями практики, но и соображениями общего характера, поскольку неясно, почему здесь оказываются непригодными обычные приемы анализа. На наш взгляд, возникающие трудности могут быть естественным образом преодолены переходом на более крупномасштабный структурный уровень рассмотрения пластического формоизменения с привлечением аппарата теории границ. Идея состоит в следующем принято, что фазовое превращение в поле механических напряжений облегчается, если напряжения совершают положительную pa6oi y на дисторсиях превращения, и наоборот, затормаживается, если работа отрицательна. Поэтому благоприятно ориентированных фаз появляется больше и дисторсия превращения разных знаков (в отличие от ненапряженного кристалла) не компенсируется. В результате возникает макроскопическая дисторсия, воспринимаемая как деформация пластичности превращения. Обращение к теории границ позволяет избавиться от необходимости детального атомно-дислокационного рассмотрения различных вариантов перегруппировки атомов в процессе превращения, т. е. ограничиться анализом сразу на крупномасштабном структурном уровне. .  [c.203]

Диаграмма состояния Ре—С дает представление о фазовых и структурных превращениях в условии равновесия, т. е. при очень малой степени переохлаждения (перенагрева). Повышенные скорости охлаждения тормозят диффузионные процессы, а при больших степенях переохлаждения они полностью прекращаются. Поэтому состав и строение фаз структурных составляющих, образующихся при термической обработке в процессе высоких скоростей охлаждения, значительно отличаются от равновесных. Вследствие этого изменяются и свойства сплавов железа. В основах теории термической обработки лежат фазовые превращения, протекающие в неравновесных условиях. Поэтому ниже рассматривается влияние температуры и времени превращения, т. е. его кинетика, на структуру и свойства сплавов на железной основе.  [c.162]


Д. К. Чернов еще в 1868 г. открыл наличие фазовых превращений в стали при ее нагревании и установил при этом критические точки. Это открытие заложило основы современного металловедения и термической обработки стали. В 1878 г. он разработал теорию кристаллизации и строения стального слитка, сохранившую свое значение до наших дней. Н. С. Курнаков, основатель нового отдела общей химии — физико-химического анализа, широко применяемого в теоретической и прикладной химии, металлургии и т.д., создатель и руководитель большой школы советских химиков, сыграл выдающуюся роль в создании алюминиевой и магниевой промышленности в нашей стране. Г. В. Курдюмов открыл новый класс фазовых превращений в твердых телах — бездиф-фузионные превращения.  [c.335]

В результате этих исследований было установлено, что не только в высоколегированных сплавах, но и в обычных конструкционных сталях, в случае их гфедварительной эакалки на мартенсит, возможен кристаллографически упорядоченный механизм обратного а у превращения, следствием чего является фазовый наклеп и рекристаллизация аустенита. Вытекающая отсюда двухстадийная схема перекристаллизации стали при нагреве (а у превращение + рекристаллизация аустенита) явилась новьпу и важным этапом развития теории и практики термической обработки. Одновременно с этим исследования, проведенные под руководством КА. Мальш1вва, были направлены на изучение фазового наклепа с далью его использования для повышения прочности аустенитных сплавов на Fe-Ni основе.  [c.4]

У. в. в твёрдых телах. Энергия и давление в твёрдых телах имеют двоякую природу они связаны с тепловым движением и с взаимодействием ч-ц (тепловые и упругие составляющие). Теория междучастичных сил не может дать общей зависимости упругих составляющих давления и энергии от плотности в широком диапазоне для разных в-в, и, следовательно, теоретически нельзя построить функцию е(р/р). Поэтому ударные адиабаты для твёрдых (и жидких) тел определяются из опыта или полуэмпириче-ски. Для значит, сжатия твёрдых тел нужны давления в миллионы атмосфер, к-рые сейчас достигаются при эксперимент. исследованиях. На практике большое значение имеют слабые У. в. с давлениями 10 —10 атм. Это давления, к-рые развиваются при детонации, взрывах в воде, ударах продуктов взрыва о преграды и т. д. Повышение энтропии в У. в. с такими давлениями невелико, и для расчёта распространения У. в. обычно пользуются эмпирич. ур-нием состояния типа /> Л[(р/ро)"—1], где величина А, вообще говоря, зависящая от энтропии, так же, как и п, считается постоянной. В ряде в-в — железе, висмуте и др. в У. в. происходят фазовые переходы — полиморфные превращения. При небольших давлениях в твёрдых телах возникают упругие волны, распространение к-рых, как и распространение слабых волн сжатия в газах, можно рассматривать на основе законов акустики.  [c.779]


Смотреть страницы где упоминается термин Основы теории фазовых превращений : [c.380]    [c.37]    [c.6]   
Смотреть главы в:

Металловедение и термическая обработка  -> Основы теории фазовых превращений



ПОИСК



Основы теории

Превращение

Превращение фазовое

Фазовые теория



© 2025 Mash-xxl.info Реклама на сайте