Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Превращения кристаллические

Зависимости для одноименных образцов кобальта, полученные при испытаниях в режиме нагрева и охлаждения в вакууме, приведены на рис. 1, а. Трение при нагреве сначала уменьшается, но при превышении температуры полиморфного превращения кристаллической решетки кобальта из гексагональной в ГЦК ( =i 400° С), практически совпадающей с температурой начала адгезионного взаимодействия (вертикальная штрих-пунктирная линия на рис. 1, а), резко возрастает с соответствующим ростом амплитуды колебаний регистрируемых значений коэффициента трения. Значение среднего коэффициента трения достигает 2,4 при 900° С. (Практически такой же вид имеет зависимость, полученная в вакууме 10" мм рт. ст. [6].) При испытаниях в режиме охлаждения зависимость повторяется, но со сдвигом в сторону более низких температур, что, по-видимому, вызвано некоторым запаздыванием по температуре полиморфного превращения в процессах относительно быстрого нагрева и охлаждения. Вероятно, в некотором интервале температур кобальт при трении существует в двух кристаллических модификациях.  [c.54]


МОДЕЛИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ КРИСТАЛЛИЧЕСКИХ ФОРМ ЗЮ,  [c.157]

Фазовые превращения кристаллических веществ. Твердое вещество образуется из его жидкого или газообразного состояния по мере понижения температуры путем сближения атомов (моле-  [c.25]

Первичная кристаллизация. Фазовое превращение кристаллического вещества в жидкое (плавление) и обратно затвердевание) происходит при определенной для данного вещества, зависящей от давления температуре Температура плавления совпадает с температурой твердения температурой первичной кристаллизации).  [c.26]

В точке S на линии PS в результате превращения кристаллической решетки у-железа в а-железо, а следовательно, и резкого уменьшения растворимости углерода в железе происходит эвтек-. тоидное превращение аустенит, содержащий 0,8% С, превращается в перлит.  [c.123]

В I эта проблема разрешается на основе концепции перестраиваемого потенциального рельефа. Показано, что динамическая компонента вектора смещений описывает колебания атомов в неизменном рельефе, а смещение его минимумов при удалении от равновесия деформацию превращения кристаллической решетки. При этом оказывается ( 2), что переход типа мартенситного превращения не может быть сведен к обычному фазовому переходу. Наиболее адекватным его представлением является синергетический подход, который сводится к теории Ландау только в адиабатическом приближении, отвечающем диссипативному режиму эволюции системы.  [c.113]

Политетрафторэтилен имеет упорядоченную структуру и является неполярным диэлектриком. Наличие 80—90 % кристаллической фазы обусловливает высокую температуру плавления полимера, твердость, аморфная — достаточную гибкость. Температура стеклования аморфной фазы составляет—120 °С, но полимер при этой температуре еще не становится хрупким. Температура превращения кристаллической фазы в аморфную фазу равна 327 °С в интервале температур 327— 415 °С политетрафторэтилен находится в высокоэластическом состоянии. При температуре плавления (327 °С) и выше непрозрачный полимер становится прозрачным, спекается в монолитную массу.  [c.108]

Схема основных превращений кристаллических модификаций кремнезема при повышении температуры следующая  [c.100]

Сознавая, что удельный объем металлов может изменяться под влиянием (I) упругих деформаций, (2) температурного расширения, (3) внезапных аллотропных превращений кристаллической структуры или (4) постепенных необратимых изменений структуры, вызываемых холодной или горячей пластической обработкой, и что механические постоянные твердого тела — модули упругости, коэффициент теплового расширения, вязкость и предел текучести — изменяются с температурой далеко не простым образом, следует ясно представлять себе, что расчет температурных напряжений в телах, когда температура изменяется в широком диапазоне, выдвигает сложные проблемы ), в особенности если температурное поле носит переходный характер, т. е. может очень быстро изменяться со временем, как, например, в  [c.458]


Коэффициенты расширения вдоль кристаллографических направлений измерялись также на литых образцах, состоявших почти из чистого соединения №5813(7 /). Параметры решетки указывают на более сильное расширение по оси а, чем по оси с (см. табл. 3). При длительных выдержках (около 50 час) уже при 600° становится заметным превращение кристаллической формы Т1 в Т2. При этом кристаллы Т1 окончательно исчезают при 900°, а форма Т2 полностью еще не успевает образоваться. Создается впечатление, что здесь должна возникнуть еще и другая кристаллическая фаза. Гольдшмидт. [18] считает, что фаза Т1 является высокотемпературной формой, которую можно закалить и которая в течение некоторого времени может быть стабильной при температурах до 1000°. Другое объяснение этого обстоятельства было дано при исследовании системы ЫЬ-5-81—В [19], в которой появление двухфазного поля Т1 +Т2 связывалось с присутствием в соединении ниобия или металлоида.  [c.144]

Полиморфные превращения кристаллической части огнеупорных материалов, например кварца в динасе, сопровождаются изменениями его упругих свойств. Аналогичные изменения упругих свойств или возникновение пластической деформации могут обнаруживаться и в момент разрушения решеток кристаллической части огнеупоров, например каолинита при температуре его дегидратации (500—600°).  [c.158]

Аллотропические превращения кристаллической решетки в твердом состоянии сопровождаются сигналами АЭ большой интенсивности при мартенситном превращении. Такое превращение происходит при охлаждении ниже точки перекристаллизации, в небольших объемах, путем небольшого перемещения атомов в решетке. Появляющаяся фаза имеет больший объем, чем исходная.  [c.183]

Эти особенности существенно отличают магнитное превращение от аллотропического. Типичными для аллотропического превращения являются изменение кристаллической решетки, перекристаллизация и тепловой гистерезис превращения.  [c.59]

Кристаллические решетки а- и 7-железа и температуры равновесных превращений были приведены на рис. 38.  [c.162]

Границы зерен являются участками, в которых диффузионные процессы облегчены ввиду наличия в этих местах дефектов кристаллического строения. Если растворимость диффундирующего вещества в металле мала, то часто наблюдается преимущественная диффузия по границам зерен. В случае значительной растворимости диффундирующего элемента в основном металле роль пограничных слоев повышенной растворимости уменьшается. В момент фазовых превращений диффузия протекает быстрее.  [c.323]

Цинк металл с низкой температурой плавления (419°С) и очень низкой температурой кипения (906°С), высокой плотностью (7,1 г/см ). Прочность цинка низка (ств=15 кгс/мм ) при высокой пластичности (6 = 50%). Кристаллическая решетка гексагональная. Аллотропических превращений не имеет.  [c.628]

Существование одного и того же металла в нескольких кристаллических формах носит название полиморфизма, или аллотропии. Перестройка кристаллических решеток при критических температурах называется полиморфными превращениями. Полиморфные модификации обозначаются греческими буквами а, (3, v и другими, которые в виде индекса добавляют к символу элемента. Полиморфную модификацию при самой низкой температуре обозначают буквой а, при более высокой р и т. д.  [c.5]

Действие излучения на металлы состоит в нарушении их кристаллической решетки при упругих столкновениях с ядрами атомов тяжелых металлов и при термических преобразованиях, что приводит к изменению ряда свойств понижению пластичности и возрастанию сопротивления пластической деформации, росту электропроводности, ускорению процессов диффузии, инициированию фазовых превращений в металле.  [c.369]

Переход металла из жидкого состояния в твердое (кристаллическое) называется кристаллизацией. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с меньшей свободной энергией или термодинамическим потенциалом F, т. е. когда свободная энергия кристалла меньше жидкой фазы. Если превращение происходит с небольшим изменением объема, то f = Я — TS, где л — полная энергия системы Т — абсолютная температура S — энтропия  [c.28]


Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах, или в разных модификациях. В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа. Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать буквой а, а при более высокой Р, затем "у и т. д.  [c.40]

Иной характер имеет различие между газообразным и красталлическим состояниями вещества. Кристаллическое состояние есть анизотропная фаза вещества, а газообразное состояние представляет собой изотропную фазу его. Поэтому непрерывный переход из твердого состояния в газообразное, а также в жидкое при высоких температурах (например, больших критической) едва ли возможен, соответственно чему кривая фазового равновесия между кристаллической и жидкой фазами не имеет конца и, в частности, критической точки фазового превращения кристаллическая фаза — жидкость, ло-видимому, не существует. Вместе. с тем нужно иметь в 1виду, что при температуре вблизи точки кристаллизации в свойствах кристаллической и жидкой фаз имеются сходные черты. Вообще при температурах, близких к температуре плавления, жидкость по своим свойствам гораздо ближе к твердому состоянию, чем к газообразному. Подтверждением этого является наличие у жидкостей вблизи точки плавления некоторого порядка в расположении молекул, вследствие чего можно говорить условно о квазикристаллической структуре жидкости. Близость свойств жидкого и твердого состояний хорошо видна из табл. 4-2, в которой приведены значения молярной теплоемкости ряда жидкостей (преимущественно расплавленных металлов, представляющих собой с точки зрения молекулярной структуры простейшие жидкости). У жидкостей молярная теплоемкость заключена между 27,6 и 36,9 кдж/кмоль град, тогда как у кристаллических тел она составляет согласно закону Дюлонга —Пти 25 кдж1кмоль град. Таким образом, молярная теплоемкость жидкостей практически такая же, как у кристаллических тел. Это означает, что частицы жидкости подобно атомам или ионам кристаллической решетки совершают периодические колебательные движения, причем в жидкостях центр колебаний может вследствие теплового движения перемещаться, в пространстве. Последнее объясняет некоторое превышение теплоемкости жидкостей по сравнению с твердым состоянием.  [c.125]

Очень необычны свойства фуллеренов. Так, кристаллические фуллерены представляют собой полупроводники с фотопроводимостью при оптическом излучении, а кристаллы легированные атомами щелочных металлов, обладают металлической проводимостью и переходят в сверхпроводящее состояние при 30 К и выше. Превращение кристаллического фуллерена в алмаз происходит даже при комнатной температуре при давлении 20 ГПа, а при нагреве фуллерена до 1500 К для перехода в алмаз достаточно давления 7 ГПа (для аналогичного превращения графита в алмаз требуются температура 900 К и давление 30—50 ГПа). Растворы фуллеренов имеют нелинейные оптические свойства, что проявляется в резком снижении прозрачности раствора при превышении некоторого критического значения интенсивности оптического излучения. Фулле-ренам как молекулярным кластерам посвящены тысячи оригинальных статей, десятки обзоров и монографий, поэтому в данной книге они только упоминаются в связи с синтезом нового класса молекулярных кластеров, имеющих состав МлС,2, где М — атом металла.  [c.26]

Наиболее часто превращение кристаллической решетки совершается таким образом, что в различных местах старой решетки образуются зародыши кристаллов, способные к росту (см. 13.3). На рис. 9.19 показаны отдельные стадии превращения двухмерной модели. На рис. 9.19, а изображена решетка а-модификации с отдельными зародышами новой фазы на рис. 9.17,6 — промежуточная стадия в ходе процесса превращения, нри этом заметны расширившиеся области р-модифика-ции. На рис. 9.19, в изображена решетка новой фазы с остатками, характерными для промежуточной стадии. Таким образом, образуется не единая кристаллическая решетка, а кристаллический порошок. Так, например, при переходе моноклинной серы в ромбическую наблюдается постепенное помутнение иголок, потому что в различных местах образуются зародыши ромбической структуры.  [c.188]

Изменение прочности образцов бетона с андезитовым заполнителем после нагрева аналогично изменению прочности образцов с шамотным заполнителем. Однако в интервале температур 400—600° наблюдается более резкое снижение прочности вследствие модификационного превращения кристаллического кварца, образовавшегося в результате нагревания геля кремневой кислоты, а также свободного кварца, находившегося в самом анде-зитовом камне.  [c.45]

Недавно Хьюз и Маккуин ) смогли измерить плотности двух горных пород типа габбро и дунита при нескольких сверхвысоких давлениях в диапазоне от 150 до 750 кбар (или от 148 000 до 740 000 атм, 1 кбар = 986,9 атм). Они подвергали при динамических испытаниях небольшие диски из этих материалов (диаметр дюйм, высота Д дюйм) воздействию фронта ударной волны, возникавшей при взрыве заряда сильной взрывчатки под алюминиевой пластинкой, на которой находились диски. В этих ценных опытах впервые было выяснено поведение пород, адиабатически сжимаемых искусственным путем при столь высоких давлениях. Они доказали, что плотный дунит с начальной плотностью рг = 3,25 см был сжат до плотности р = 4,9 г/с.из при давлении 720 кбар, а габбро плотности рг=3,00 см сжато до р = 5,0 г/см при 750 кбар-, более того, габбро претерпело полиморфное превращение кристаллической структуры при давлении 150 кбар, превратившись скачком в более плотную и менее сжимаемую породу.  [c.768]

Мартенситное превращение стали при обработке холодом не снижает коррозионную стойкость стали, хотя оно сопровождается образованием напряжений второго и третьего рода. М. М. Кристаль показано, что превращение кристаллической решетки у- а не влияет на коррозионную стойкость и способность нержавеющей стали к пассивации, если эти видоизменения не сопровождаются изменением состава отдельных фаз.  [c.197]


К пассивным методам АК относят акустико-эмиссионный метод (см. 2.7), в котором используют бегущие волны (рис. В.7). Явление акустической эмиссии (от лат. ет1551о — испускание, излучение) состоит в излучении упругих волн материалом ОК в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин, превращения кристаллической структуры, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с ОК преобразователи принимают упругие волны и позволяют установить наличие источника эмиссии, а при обработке сигналов, проходящих от нескольких преобразователей, — также расположение источника.  [c.12]

Указанные причины обусловливают и то, что обратное превращение из кристаллического состояния в жидкое может произойти ТОЛЬКО выше температуры Ts , это явление называется перенагреванием.  [c.45]

Увеличение с. к. и ч. ц. при малых степенях переохлаждения обусловлено тем, что вблизи равновесной точки (Ts) подвижность жидкости велика и ускорение кристаллизации с увеличением степени переохлаждения вызывается увеличением разности свободных энергий жидкого и кристаллического состояни 1. Снижение с. к. и ч. ц. при больших степенях переохлаждения вызвано тем, что при больших переохлаждениях и, следовательно, при низких температурах подвижность атомов уменьшена, а тем самым уменьшена и способность системы к превращению. При больших степенях переохлаждения с. к. и ч. ц. становятся равными нулю, та К как подвижность атомов уже недостаточна для того, чтобы осуществилась перестройка их из хаотического расположения в жидкости в правильное в кристалле.  [c.48]

V- -a сопровождается уменьшением коордиггяционного числа кристаллической решетки и уменьшением компактности. Если бы это уменьшение не компенсировалось в значительной степени уменьшением атомного радиуса, то железо должно было бы при превращении у а увеличиваться в объеме на 9%. На самом дело (благодаря уменьшению атомного радиуса) объем железа уве-  [c.58]

Согласно современным представлениям, при магнитных превращениях происходит изменение не в кристаллической структуре металла, а во взаимодействии внешних и внутренних элект-роь чЧых оболочек атомов.  [c.59]

Температура плавления цементита — около 1250°С. Аллотропических превращений цементит не испытывает, но при низких температурах он слабо ферромагнитен. Магнитные свойства цементит теряет при 217°С. Цементит имеет высокую твердость (>>ЯВ 800, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Эти свойства являются, вероятно, следствисм сложного строения кристаллической решетки цементита.  [c.166]

Исследования последних лет (Л. И. Лысак, Б, И. Николин), показали, что кроме обычного у >"И-превращения, протекающего по атермической или изотермической кинетике (но в обоих случаях приводящих к образованию мартенсита с объемноцентрированной тетрагональной решеткой) возможно в сталях образование мартенситных фаз с другими кристаллическими решетками, а именно е-мартенсит с гаксагональной решеткой -мартенсит с ромбоэдрической структурой х -мартенсит с объемноцентрированной тетрагональной решеткой, но отличными чем у а-мартенсита размерами.  [c.268]

Изучение микроструктуры, атомно-кристаллической структуры, физических и механических свойств в отпущенном состоянии и иэменепие этих свойств в процессе отпуска позволили с необходимой до сто верностью установить -последовательность превращения nj)H нагреве закаленной стали.  [c.271]

Последовательность карбидных превращений гари отпуске изучалась Б. А. Апаевым, В. Г. Пермяковым и другими исследователями. Имеется точка зрения, что промежуточные карбиды (е, и др.) представляют собой цементит (РезС) разной дефектности кристаллического строения.  [c.272]

Кристаллическая структура ос и а практически одинакова (гексагональная нлотиоупакованная решетка), однако превращение при низкой температуре приводит к искажениям в а-решеткс и уменьшению ее пластичности (иногда та ой мартенсит в титановых сплавах обозначают через а" .  [c.514]

Механическая смесь — компоненты сплава обладают полной взаимной нерастворимостью и имеют различные кристаллические решетки. При этих условиях сплав будет состоять из смеси кристаллов составляющих ее компонентов. Механическая смесь имеет постоянную температуру плавления. Механ1[ческая смесь, образовавшаяся одновременной кристаллизацией из расплава, называется эвтектикой в процессе превращения в твердом состоянии— эвтектоидом (например Fe , + Fe/] — ледебурит Feg + Fe — перлит).  [c.6]

Примеси, удовлетворяющие этим требованиям, обладают естественной активностью. Естественная активность дисперсных частиц, взвешенных в жидкости, связана с закономерностями зарождения центров кристаллизации на твердых поверхностях, которые rj общем виде были сформулированы П. Д. Данковым и С. Т. Конобеевским. Превращение на поверхности твердого тела развивается таким образом, чтобы конфигурация атомов твердой фазы сохранилась (или почти сохранилась) и в новой твердой фазе. Возникающая при указанном процессе кристаллическая решетка новой фазы сопрягается с кристаллической решеткой старой фазы подобными кристаллографическими плоскостями, параметры кото[)ых 01личаются друг от друга минимально. Причина закономерной ориентации двух фаз с термодп-ппмическои точки зрении состоит в том, что минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз.  [c.36]


Смотреть страницы где упоминается термин Превращения кристаллические : [c.15]    [c.457]    [c.937]    [c.133]    [c.477]    [c.109]    [c.242]    [c.74]    [c.461]    [c.60]    [c.27]   
Физико-химическая кристаллография (1972) -- [ c.0 ]



ПОИСК



Кристаллические

Методы исследования превращений и состояния кристаллической решетки при высоких и низких температурах

Модели фазовых превращений кристаллических форм

Особенности фазовых превращений железа, титана и их сплавов с позиций общей термодинамической теории и представлений о несовершенствах кристаллического строения твердых металлов

Превращение

Превращения кристаллические в первой координации

Превращения кристаллические во второй координаци

Превращения кристаллические второго рода

Превращения кристаллические диффузионные

Превращения кристаллические механизмы

Превращения кристаллические монотропные

Превращения кристаллические первого рода

Превращения кристаллические перекидные

Превращения кристаллические реконструктивные

Превращения кристаллические скорость

Превращения кристаллические со смещением

Превращения кристаллические температура

Превращения кристаллические энантиотропные

Превращения кристаллические энтальпия

Превращения кристаллические энтропия



© 2025 Mash-xxl.info Реклама на сайте