Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни Конфигурация

При конструировании внутренних полостей следует придавать стержню конфигурацию, обеспечивающую свободное его извлечение из стержневого ящика.  [c.63]

Масса отливки Количество стержней Конфигурация отливки  [c.204]

Примерную схему технологического процесса изготовления отливки в одноразовой песчано-глинистой форме можно представить следующим образом. По чертежу детали разрабатывают чертеж модели, затем изготовляют из дерева или металла модель и стержневой ящик. По модели из формовочной смеси изготовляют литейную форму, а из стержневой смеси — стержни, конфигурация которых соответствует внутренним полостям отливки. Для повышения прочности стержней их сушат в специальных сушильных печах. Форму разбирают, извлекают из обеих полуформ половинки модели, устанавливают в форму стержни и вновь ее собирают. Затем в форму заливают металл. После затвердевания металла в форме образуется отливка, которую освобождают от формовочной смеси. Из отливки выбивают стержни, отрезают литниковую систему, очищают от пригоревшей формовочной смеси и зачищают остатки литника. После термической обработки и последующего контроля отливку направляют в механический цех или на склад готовой продукции.  [c.7]


Конфигурация стержневых знаков и их размеры должны обеспечивать легкую установку стержней в форму и их устойчивость. С этой целью предусматривают специальные замки. Припуски на механическую обработку, формовочные уклоны, галтели, размеры стержневых знаков регламентированы ГОСТами.  [c.129]

Полости в отливках оформляют песчаными, оболочковыми или металлическими стержнями. Кокили с песчаными или оболочковыми стержнями используют для получения отливок сложной конфигурации из чугуна, стали и цветных сплавов, а с металлическими стержнями — для отливок из алюминиевых и магниевых сплавов.  [c.150]

Конструкция литой детали должна обеспечивать высокий уровень механических и служебных характеристик при заданной массе, конфигурации, точности размеров и шероховатости поверхности. При разработке конструкции литой детали конструктор должен учитывать как литейные свойства сплавов, так и технологию изготовления модельного комплекта, литейной формы и стержней, очистку и обрубку отливок и их дальнейшую обработку. Кроме того, необходимо стремиться к уменьшению массы отливок и упрощению конфигурации.  [c.174]

Открытые отливки целесообразно формовать по моделям без применения стержней. В этом случае модели придают конфигурацию, точно соответствующую форме изделия. При заформовке модели получается негативный отпечаток полости (литейный болван). Непременное условие применения этого способа состоит в том, чтобы на внутренней поверхности детали не было подрезок.  [c.61]

На рис. 69 приведен пример изготовления стержня для образования в детали цилиндрической полости с внутренними ребрами. По конфигурации стержня возможен разъем только в плоскости А — А (вследствие налитая в полости кольцевого ребра т). Ребра образуют в ящике подрезки в этих случаях приходится выполнять стержни из отде.чьных частей и склеивать их, что усложняет изготовление и снижает точность литья. В целесообразных конструкциях б, в ребра расположены в плоскости разъема или перпендикулярно к ней стержень свободно выходит из ящика.  [c.63]

При конструировании деталей с несколькими стержнями примерно одинаковой конфигурации рекомендуется унифицировать стержни, добиваясь сокращения их номенклатуры.  [c.65]

График может служить только для ориентировочной оценки толщины стенок. Допустимая толщина стенок сильно зависит от конфигурации отливки. Сложные отливки, формуемые в нескольких опоках с применением большого числа стержней, необходимо делать толстостенными. Большое.влияние оказывает технология литья состав формовочных и стержневых смесей, условия питания и охлаждения, устройство литниковой системы и др.  [c.91]


Зерновой состав стержневой смеси для лопатки ГТД подбирают в зависимости от конфигурации и размеров стержня, который приведен в табл. 65.  [c.237]

Состав стержневой смеси для стержней простой конфигурации прямого профиля  [c.238]

Керамические стержни, используемые для образования внутренней полости лопатки ГТД, существенно отличаются по геометрическим размерам и конфигурации от размеров фарфоровых изделий.  [c.448]

Принимая в качестве лишних неизвестных внутренние усилия, во многих случаях можем значительно упростить расчет. Например, если исходная система симметрична (по конфигурации и расположению жесткостей), то основную систему выгодно строить также симметричной, поскольку при этом некоторые побочные коэффициенты канонических уравнений будут равны нулю. Так, при расчете симметричной рамы, показанной на рис. 408, а, основную систему целесообразнее получить разрезом горизонтального стержня (ригеля) посредине (рис. 409, а). При этом основная система будет также симметричной. Тогда в числе лишних неизвестных будем иметь симметричные усилия кососимметричные 2- Эпюры  [c.428]

В 2.10 была рассмотрена задача о распространении продольной волны в стержне. Скорость ее, согласно элементарной теории, давалась выражением Со = У /р. Эта скорость отлична как от l, так и от Сг. В действительности волны вида (13.4.2) в стержне, представляющем собою ограниченное тело, распространяться не могут, возмущение, переносимое вдоль оси стержня, меняет свою конфигурацию.  [c.440]

Здесь Р (а) — линейная функция от о и производных о до порядка п включительно с постоянными коэффициентами, Q e) — такая же функция от деформации е. К соотношению вида (17.5.9) можно прийти, если рассмотреть модель, составленную из большого числа пружин и вязких сопротивлений, соединенных в разных комбинациях последовательно и параллельно. Конечно, было бы достаточно наивно искать в структуре материала соответствующие упругие и вязкие элементы, однако способ, основанный на построении реологических моделей, обладает некоторым преимуществом. Мы убедились, что в уравнении (17.5.8) должно быть J. < , при этом не было необходимости в обращении к модели, условие < Е, из которого следует первое неравенство, означает только то, что приложенная сила совершает положительную работу, расходуемую на накопление энергии деформации, а частично рассеиваемую в виде тепла. В общем случае (17.5.9) тоже должны быть выполнены некоторые неравенства, которые могут быть не столь очевидны. Но если построена эквивалентная реологическая модель из стержней, накапливающих энергию, и вязких сопротивлений, рассеивающих ее, то у нас есть полная уверенность в том, что для соответствующего модельного тела законы термодинамики будут выполняться. Второе преимущество модельных представлений состоит в том, что для любой заданной конфигурации системы может быть вычислена внутренняя энергия, представляющая собою энергию упругих пружин, и скорость необратимой диссипации энергии вязкими элементами. Имея в распоряжении закон наследственной упругости (17.5.1), (17.5.2), мы можем подсчитать полную работу деформирования, но не можем отделить накопленную энергию от рассеянной. Поэтому, например. Блонд целиком строит изложение теории на модельных представлениях.  [c.590]

Возможно изготовление отливок любой конфигурации, особенно требующих большого количества стержней  [c.41]

С учетом возможных формы, размеров и положения стержней определяются конфигурация и размеры внутренних поверхностей (отверстий).  [c.68]

Конструкция отливки должна позволять изготовление литейной формы с минимальным числом разъемов. Конфигурация и расположение стержней в форме должны обеспечивать свободный выход газов из стержней. Число стержней в форме должно быть минимальным  [c.73]

Расчет радиально-осевого рабочего колеса вследствие его сложной конфигурации и сложного характера распределения действующих сил представляет большие трудности. Методы расчета зависят от типов рабочих колес. Быстроходные рабочие колеса рассчитывают как систему заделанных по концам кривых стержней, имитирующих лопасти [46]. Расчет запрограммирован на ЭВМ и в таком виде может быть использован. В нем не учитывается изменение формы сечений в процессе нагружения, и это не позволяет найти наибольшие напряжения в заделке. Задача сводится к определению напряжений в любом сечении лопасти в виде  [c.190]


Элементы литейной формы. Литейная форма представляет собой устройство, предназначенное для заливки металла н образования отливки (рис. 2.1). Она должна иметь рабочую полость /, где непосредственно формируется тело заготовки, а также литниковую систему, обеспечивающую подвод металла в рабочую полость и питание отливки в процессе кристаллизации. Конфигурация и размеры рабочей полости должны соответствовать очертаниям и размерам изготовляемой отливки. При этом следует иметь в виду, что размеры полости должны превышать размеры отливки на величину литейной усадки металла. В свою очередь, размеры отливки должны быть больше размеров детали на величину снимаемого при механической обработке технологического припуска. Таким образом, окончательные размеры рабочей полости литейной формы включают в себя соответствующие размеры детали, припуски на механическую обработку и на литейную усадку металла. Внутри некоторых отливок, а также на их наружной поверхности могут быть различные отверстия, полости и выемки. Для выполнения при сборке формы в ней устанавливаются соответствующие керамические или металлические элементы, называемые стержнями 8 (рис. 2.1). Стержни удаляются из отливки при выбивке, оставляя в ней после себя необходимые углубления или отверстия. Литниковая система (рис. 2.1) включает в себя чашу (воронку) 2, стояк 3, дроссель 4, регулирующий скорость заливки и предотвращающий вакуум (подсос воздуха) в стояке, шлакоуловитель 5, расположенный в верхней опоке для задержания неметаллических включений.  [c.45]

Особенности динамики упругих систем с распределенными параметрами. С увеличением числа степеней свободы упругой системы до бесконечности она превращается в систему с распределенными параметрами. Статика таких упругих систем рассматривалась в гл. VI и VII. Их динамика составляет раздел теории колебаний. Как и в упругих системах с конечны.м числом степеней свободы (свободных координат), колебания систем с распределенными параметрами имеют нормальные формы. Эти формы зависят от конфигурации системы и способов ее закрепления и опирания. На рис. 8.24 изображены нормальные формы поперечных колебаний тонкого стержня с шарнирно опертыми концами.  [c.233]

Для экспериментального построения поверхности прочности необходимо провести эксперименты на растяжение, сжатие, чистый сдвиг и комбинированное нагружение. Содержательный обзор и экспериментальное сравнение многочисленных методик, предложенных для испытания композитов, в том числе испытаний на растяжение, сжатие, изгиб и кручение стержней с анализом геометрии образца и конфигурации захватов, приведены в работе Лено [29].  [c.462]

Для того чтобы дать типичный пример приложения этого метода, рассмотрим стержневую систему P P i Рп> прикрепленную на конце к неподвижному шарниру и имеющую свободными другой конец и промежуточные узлы (за исключением лишь связей, происходящих от соединения их со стержнями). Представим себе, что к W — 1 узлам Рз, Рд,. .., Р приложены заданные силы F , F ,. .Fn, и определим веревочный многоугольник (или конфигурацию равновесия системы) и реакцию в неподвижном конце Pi.  [c.159]

Фермы могут быть двух видов изменяемые и неизменяемые. Изменяемые фермы, как и односвязные системы, могут принимать непрерывную совокупность различных конфигураций. Таким, например, является какой угодно простой (замкнутый) многоугольник или также многоугольник с добавочным стержнем, один конец которого соединен шарниром с какой-нибудь вершиной многоугольника.  [c.162]

На рис. 60, а показана схема подрезки. Деталь п.меет наклонные ребра. При извлечении модели (направление извлечения показано штриховкой, перпендикулярной к плоскости А — А разъема формы) ребра срезают участки фор.мы, зачерненные на рисунке. Для устранения подрезки можно выполнить части модели, мешающие выемке, отъемными или выдвижными. Перед извлечением модели эти части отни.мают или убирают внутрь модели, после чего модель выходит из формы. По другому способу модель изготовляют с заполнением подрезаемых участков такая модель дает форму, изображенную на виде 6. Требуемую конфигурацию получают установкой в форме закладных стержней после извлечения модели (вид в).  [c.56]

Конфигурация внутренних полостей должна допускать свободную установку стержней в форме. Примером несобираемости формы может служить конструкция каплевидного трубопровода (см. рис. 10, д).  [c.64]

На рис. 74 показан пример унификации стержней для картера рядного поршневого двигате.дя. В конструкции а внутренние полости картера образуются стержнями трех видов - 1, 2, 3. Незначительное изменение конфигурации задней степкп картера (вид 6) позволяет свести число видов стержней к двум (1, 2).  [c.66]

Замечательные механические свойства мартенситно-стареющей 18%-ной никелевой стали ВКС отечественной разработки позволяют применять ее при изготовлении пресс-форм для литья деталей сложных конфигураций, когда к пресс-форме предъявляются повышенные требования по разгаростойкости. Одной из областей применения этих сталей является использование их для высоконагру-женных стержней пресс-форм литья под давлением алюминиевых сплавов [3].  [c.58]

Данная технология изготовления керамических стержней обладает следующими недостатками. Стержни оказываются либо рыхлыми, либо деформированными в процессе литья, что нарушает требуемую геометрию лопаток. Она приемлема только для литья полых лопаток простой конфигурации (см. рис. 113, 6). Получать полые лопатки с минимальными отверстиями 0 = 0,5-1,0 мм и глубокими пазами с длиной пера 100 - 120 мм практически невозможно. При изготовлении стержней соотношения между диаметром и длиной отверстия, а также глубина пазов и друшх полостей должны быть такими, чтобы обеспечить получение качественной керамической формы. При нанесении слоя оболочки глубокие и узкие части моделей с трудом заполняются суспензией и полученный слой практически невозможно обсыпать огнеупорным материалом. Суспензия, скопившаяся в отверстиях и пазах, отверждается очень долго из-за трудности удаления продуктов испарения.  [c.234]


Состав стержней массы, которую применяют для изготовления сложной конфигурации для литья лопаток многоканального и штыркового охлаждения, имеющих толщину 1 - 5 мм и длину пера более 100 мм, приведен в табл. 64.  [c.237]

Оптимальные температурные режимы обжига стержней выбирают в зависимости от конфигурации и размера стержней, драйе-ров и коробов.  [c.238]

Изготовление керамических стержней на основе связующего полиалюмосилоксанового лака КО-086 осуществляют для стержней простой конфигурации прямого профиля толщинами 5 мм. Состав стержневой смеси приведен в табл. 66. Следует отметить, что количество ППЭН вводят свыше 100% (14 - 17%)  [c.238]

Нестационарные задачи о пластическом формоизменении. Задачи такого рода сложны, и примеры решения немногочисленны. Жесткий штамп, внедряющийся в пластическое полупространство, встречает все большее сопротивление по мере увеличения площади контакта и останавливается на некоторой глубине (рис. 15.4.5). В результате пластической деформации стержня с выточкой, изображенного на рис. 15.4.3, конфигурация выточ-ки меняется по мере растяжения.  [c.489]

Возвращаясь к примеру остроугольного клипа, обратимся к 3.6, где было дано элементарное рассмотрение задачи об изгибе стержня из упруго-идеально-пластического материала. На рис. 3.5.1 представлены эпюры напряжений в сеченпи. По мере роста изгибающего момента пластические зоны охватывают все большую часть сечения, упругая область суживается, и в пределе, когда М М , упругая область обращается в плоскость (на чертеже в линию), отделяющую растянутую область от сжатой. Таким образом, линия разрыва напряжений может рассматриваться как предельная конфигурация упругой области, если рассматривать полностью пластическое состояние тела как предельное состояние для тела упругопластического. Но в приведенном выше изложении теории предельного равновесия подобного рода соображения могут иметь лишь наводящий характер.  [c.515]

Никель — серебристо-белый металл, широко применяемый в электровакуумной технике его достаточно легко получить в очень чистом виде (99,99 Ni) иногда в него вводят специальные легирующие присадки (кремний, марганец и др.). Получаемый из руд никель подвергают электролитическому рафинированию. Очень чистый по рошкообразнын никель можно получить путем термического разложения пентакарбонила никеля Ni( 0)5 при температуре 220 С. Никель выпускается различных марок (в зависимости от чистоты) в виде полос, пластин, лент, трубок, стержней и проволоки. К положительным свойствам никеля следует отнести достаточную механическую прочность после отжига (ар == 400—600 МПа при Д/// — — 35—.50 %). Никель легко поддается даже в холодном состоянии механической обработке (ковке, прессовке, прокатке, штамповке, волочению и т. п.). Из никеля могут быть изготовлены различные по размерам, сложные по конфигурации изделия с жестко выдержанными допусками. Стойкость никеля к окислению наглядно видна из рис. 7-10. Помимо применения в электровакуумной технике, никель используют в качестве компонента ряда магнитных и проводниковых сплавов, а также для защитных и декоративных покрытий изделий из железа и т. п.  [c.216]

Метод плавки на пьедестале можно использовать для выращивания стержней из металлического или полупроводникового расплава методами Чохральского и Степанова (в настоящее время широко используется при получении полупроводниковых материалов). Как известно, по методу Чохральского в расплав вводят сверху затравку и после оплавления ее торца вытягивают наращиваемый на затравку кристалл, медленно поднимая ее вверх. В большинстве случаев затравка и образующийся кристалл имеют цилиндрическую форму. Метод А.В. Степанова отличается от описанного тем, что дополнительно используется формооб-разователь, позволяющий управлять формой столбика расплава под фронтом кристаллизации и соответственно получать при выращивании кристаллы различной конфигурации. Успещное протекание этих процессов требует точного управления параметрами, влияющими на рост кристаллов, и в первую очередь полем температуры, а при выращивании по методу А.В. Степанова также давлением в расплаве на фронте кристаллизации [73].  [c.108]

Данных об облучении карбидокремниевых варисторов нет. Однако были проведены многочисленные исследования с целью определить влияние излучения на кристаллы и пленки из карбида кремния различной формы и конфигурации. Обычно карбид кремния рассматривают как полупроводник с вентильными свойствами и как таковой относят к элементам, обладающим несимметричными характеристиками. Однако элементы в виде дисков и стержней, получаемые при смешивании карбидов кремния и кальция со связующими материалами, становятся симметричными по отношению к прямым и обратным характеристикам. В работе [80] проведено детальное исследование влияния быстрых нейтронов на электрические характеристики карбида кремния. Изучено поведение в нейтронном потоке кремниевых и карбидокремниевых диодов. Результаты показали, что в условиях облучения карбид кремния более перспективен. Под действием интегрального потока 5-10 нейтрон1см прямое напряжение  [c.358]

Стержень, движущийся в пространстве, имеет 5 степеней свободы. В самом деле, чтобы установить конфигурацию такой системы, достаточно знать полоягение одной из ее точек Р и направление стержня с другой стороны, известно, что нужно 3 параметра д.чя определения положения точки и 2 параметра для определения направления прямой. Отсюда следует такяге, что число степеней свободы стержня сводится к 2, если точка Р остается неподвижной.  [c.276]


Смотреть страницы где упоминается термин Стержни Конфигурация : [c.203]    [c.229]    [c.142]    [c.56]    [c.404]    [c.448]    [c.11]    [c.78]    [c.266]    [c.129]    [c.166]    [c.149]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.2 , c.63 ]



ПОИСК



Конфигурация



© 2025 Mash-xxl.info Реклама на сайте