Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержневые Размеры

Исходным документом для разработки чертежа модельно-литей-ных указаний является чертеж детали (рис. 4.7, а), на котором указаны разъем модели и формы, положение отливки в форме при заливке, припуски на механическую обработку, формовочные уклоны, число стержней, размеры стержневых знаков, границы стержней и т. п.  [c.128]

При разработке литейно-модельных указаний в чертеже обозначают все стержни форму и размеры стержневых знаков 2, границы стержней, указывают плоскости набивки стержней, каналы для сбора газов и места их вывода из стержня.  [c.129]


Конфигурация стержневых знаков и их размеры должны обеспечивать легкую установку стержней в форму и их устойчивость. С этой целью предусматривают специальные замки. Припуски на механическую обработку, формовочные уклоны, галтели, размеры стержневых знаков регламентированы ГОСТами.  [c.129]

Габаритные размеры L, В, Н (см. рис. 9.15) стержневого резьбового резца такие же, как и у проходных токарных резцов. Размеры рабочей части резца (Ь == 5. .. 10 мм, i == 15. .. 30 мм) выбирают в зависимости от величины шага нарезаемой резьбы (большие размеры соответствуют большей величине шага). Задние углы бокового профиля ог, и 2 при нарезании правой резьбы принимаются в зависимости от величины угла подъема о резьбового витка.  [c.146]

Усадку учитывают корректировкой размеров формы, пользуясь гфи изготовлении моделей и стержневых ящиков усадочными метрами с размерами, увеличенными по сравнению с нормальными на величину усадки. I. "  [c.75]

Стержневые системы рассчитывают как фермы, если длины стержней превышают поперечные их размеры в плоскости фермы не менее чем в 8... 10 раз.  [c.75]

Задача 311. Определить координаты центров тяжести стержневых систем, изображенных на рис. 225, а, б, в, г, д (поперечными размерами стержней пренебречь).  [c.121]

Зерновой состав стержневой смеси для лопатки ГТД подбирают в зависимости от конфигурации и размеров стержня, который приведен в табл. 65.  [c.237]

Стержневую связующую массу готовили на основе парафина (95%), полиэтилена (5%) и связующего технического глинозема марки ГН по ГОСТ 6912-87. Глинозем предварительно подвергали термической обработке при температуре 500°С (удаление гидрат-ной влаги), измельчали до размера фракции 10 мкм с удельной поверхностью 15000 см /г.  [c.449]

Известно, что при изготовлении деталей нельзя абсолютно точно выдержать размер действительный размер детали может отличаться от номинального —теоретического размера. Поэтому при монтаже и сборке, в частности, стержневых конструкций приходится сталкиваться с неизбежной неточностью изготовления поступающих на сборку отдельных стержней. Рассмотрим на примерах, к чему может привести неточность изготовления.  [c.219]

Пусть на сборку статически определимой стержневой системы (рис. 2.41, а), теоретические размеры которой показаны пунктиром, поступили два стержня А и В, причем стержень А оказался несколько длиннее стержня В. Соединив стержни в точке О, видим, что стержни А и В повернулись на некоторые малые углы, а так как этому повороту ничто не препятствует, то и напряжения в стержнях не возникнут. Таким образом, неточность изготовления элементов статически определимой системы не привела к появлению монтажных напряжений.  [c.219]


Итак, примерный круг вопросов, включаемых в задачи на расчеты на прочность, должен быть следующим 1) проверка прочности бруса (стержня), выполняемая в форме сопоставления расчетного напряжения с допускаемым либо в форме сопоставления расчетного коэффициента запаса с требуемым при этом в одной из задач должно быть о= (1,02-е1,04) [а] или п<[п] 2) определение допускаемой нагрузки для стержневой системы и требуемых размеров поперечного сечения.  [c.83]

Реальные инженерные объекты представляют собой обычно более или менее сложные системы, образованные путем соединения отдельных, как правило, относительно простых элементов в единое целое. Ограничимся случаем, когда система образована соединенными между собой стержнями, т. е. элементами, длина которых в несколько раз превосходит характерный наибольший размер поперечного сечения. Примерами таких конструкций могут служить металлические железнодорожные мосты, ажурные опоры линий электропередачи, строительные подъемные краны и т. д. Из огромного разнообразия таких конструкций остановимся на так назы[ваемых плоских стержневых системах, в которых оси стержней (а также внешние нагрузки) расположены в одной плоскости. Будем также считать, что все стержни системы, как правило, прямые, а опорные устройства аналогичны описанным ранее, т. е. представляют собой либо заделку, либо неподвижный или подвижный шарнир.  [c.76]

У механизма с плоским толкателем, плоскость которого перпендикулярна к оси его движения, угол давления во всех положениях остается равным нулю, ибо линия действия силы, приложенной со стороны кулачка к толкателю, совпадает с нормалью к профилю и плоскости. Эта нормаль параллельна оси движения. Таким образом, размеры кулачка не влияют на величину угла давления, она остается во всех положениях равной нулю (рис. 137). Но линия действия силы, приложенной к толкателю, параллельна направляющей и только в одном положении совпадает с ней. Вследствие этого толкатель находится под действием силы, заставляющей его двигаться, и под действием пары сил, вызывающий его перекос в направляющих. Таким образом, в рассматриваемом случае наблюдается аналогичное явление перекоса, с которым приходится считаться при исследовании механизма со стержневым толкателем. С увеличением размеров кулачка плечо упомянутой пары сил  [c.214]

Как уже отмечено, сопротивление материалов рассматривает типовые элементы конструкций. В зависимости от формы различают стержневые элементы, пластины и оболочки, К стержневым относят элементы, у которых поперечные размеры малы по сравнению с длиной. У пластин толщина существенно меньше размеров элемента в плане. Оболочкой является замкнутый элемент, толщина которого мала по сравнению с другими размерами. Здесь же отметим, что существенной особенностью постановки задач в сопротивлении материалов является широкая экспериментальная проверка предлагаемых решений. Методы сопротивления материалов изменяются вместе с возникновением новых задач и требований практики. При ведении инженерных расчетов методы сопротивления материалов следует применять творчески. Успех практического расчета лежит в умении найти наиболее удачные упрощения и в доведении расчета до количественных оценок.  [c.147]

Литье в песчаные формы — самый распространенный способ литья. В машиностроении им изготавливают 75...80 % отливок (по массе). В зависимости от размеров отливки и типа производства применяют ручную, машинную или стержневую формовку. В песчаных формах можно получить отливки самой сложной конфигурации и массой от нескольких граммов до сотен тонн.  [c.36]

Минимальный диаметр отверстий, выполняемых литьем, выбирают так, чтобы избежать сильного перегрева и пригара стержня к стенкам отверстия. Возможность спекания стержневой смеси и пригара определяется массой окружающего металла, поэтому минимальный размер литых отверстий зависит от толщины стенки (т. е. длины стержня) и может быть определен по формуле  [c.57]

Рабочие полости для отливки в набитых формовочной смесью опоках получатся при помощи половинок разъемной модели, форма и размеры которой соответствуют форме и расчетным размерам рабочей полости. Сборка литейной формы из полуформ — опок— производится после извлечения половинок моделей и установки стержней в нижней полуформе. Стержни изготовляются в специальных приспособлениях — стержневых ящиках — и проходят обязательную сушку.  [c.47]


Методы теоретического синтеза для других типов механизмов, например для стержневых, разработаны пока лишь применительно к простейшим их схемам. Проектируя механизмы такого типа, конструктор предварительно отбирает ряд возможных вариантов кинематических схем и, используя методы кинематического анализа, определяет основные параметры, характеризующие движение ведомых звеньев механизмов. Сравнивая их с заданными параметрами, конструктор выбирает оптимальную для данных условий схему механизма. Обычно результаты анализа позволяют определить те изменения в размерах звеньев, которые обеспечивают лучшее приближение условий работы механизма к заданным.  [c.14]

Основные типы задач. Целью проектирования (синтеза) кинематической схемы стержневого механизма является определение размеров звеньев, при которых будет обеспечено необходимое преобразование движения. Если траектория ведомого звена сложна, то обычно схему механизма и размеры звеньев определяют методом подбора. Теоретические методы решения задач такого типа, как правило, сложны они изложены в специальных монографиях .  [c.244]

Как пояснено в гл. 7, при нагреве внутренним индуктором к. п. д. сильно зависит от зазора между нагреваемой поверхностью и индуктирующим проводом и от размеров последнего, так как ток стягивается на внутреннюю поверхность его. Для повышения к. п. д. приходится применять магнитопроводы из трансформаторной стали или ферритов. Это обстоятельство затрудняет изготовление индукторов для закалки малых отверстий (50 мм и меньше). Для их нагрева приходится использовать петлевые или стержневые индукторы.  [c.133]

К ограничениям наряду с упомянутыми условиями существования кривошипов стержневых механизмов, обеспечения требуемых габаритных размеров могут быть отнесены и многие другие условия обеспечение заданного к. п. д. механизма, заданного ритма движения точки вдоль кривой, заданного отношения скоростей звеньев и т. п.  [c.77]

Поскольку стержень Веннера в механическом отношении получается довольно непрочным, его можно применять только в рыхлых грунтах или в пробуренных шпурах. У всех стержневых измерительных электродов удельное сопротивление грунта определяется как произведение измеренного сопротивления переменному току на коэффициент формы Fo, устанавливаемый при тарировке. На рис. 3.22 показаны размеры и коэффициенты формы различных стержневых электродов.  [c.118]

Рис. 1Q.6. Группа вертикальных анодных заземлителей (размеры — в миллиметрах) / — от защитной установки (+) 5 —стержневые анодные заземлители с обсыпкой около 75 кг кокса 3—кабельная муфта Рис. 1Q.6. Группа вертикальных <a href="/info/39582">анодных заземлителей</a> (размеры — в миллиметрах) / — от <a href="/info/39641">защитной установки</a> (+) 5 —стержневые <a href="/info/39582">анодные заземлители</a> с обсыпкой около 75 кг кокса 3—кабельная муфта
В настоящей работе описываются разработанные авторами метод и аппаратура для измерения магнитного момента стержневых неоднородно намагниченных образцов (цилиндры, призмы, полосы) вне зависимости от их геометрических размеров.  [c.150]

По заданным очертанию и длинам осей стержневой системы при заданной нагрузке, закон распределения плотности вероятностей которой известен, и при известном законе распределения несущей спосо гости определить размеры поперечных сечений вдоль оси конструкции, удовлетворяющие условию равнонадежности и соответствующие минимальной массе конструкции.  [c.93]

Шаровая форма твэла позволяет добиться меньших температурных напряжений в оболочке по сравнению с напряжениями в цилиндрических стержневых твэлах при одинаковой объемной плотности теплового потока и равных геометрических размерах. Шаровая форма также допускает значительное уменьшение их размеров, поскольку обычно такие твэлы не являются конструкционными элементами активной зоны, а заполняют в виде шаровой насадки либо всю активную зону, как в реакторах AVR, THTR-300, либо какие-то ее части.  [c.7]

Изготовление стержней в нагреваемой оснастке (рис. 4.17, о) состоит в следующем. На позиции / нагретые до температуры 200—300 "С половинки стержневого ящика 2 и опустошитель 3 собирают. Из пескодувного резервуара 1 стержневая смесь с синтетической смолой вдувается в стержневой ящик. Связующее при нагреве отверждается, обеспечивая прочность стержню 4. После непродолжительной выдержки (1.5—120 с) опустошитель 3 извлекают и пневматическим цилиндром 5 отводят одну из половин ящика (поз. 2) После этого вторая половина ящика поворачивается на 90 , и вытал киватС Лями 6 стержень 4 удаляется из стержневого ящика (поз. 3) Стержни, полученные этим способом, имеют высокую прочность, точ ность размеров, газопроницаемость. Этим способом стержни изго товляют на высокопроизводительных автоматических машинах.  [c.140]

Стержневые резцы закрепляют в резцедержателе юкарного станка (рис. 6.25, а), а круглые (рис. 6.25, б), призматические (рис. 6.25, в) и тангенциальные (рис. 6.25, г), — в специальных державках. В ог-личие 01 стержневых, кругл лх и призматических тангенциальные резцы устанавливают ниже линии центров станка так, чтобы каждая точка режущей кромки резца при поперечной подаче проходила касачельво к соответствующей точке ф)асонной поверхности обрабатываемой заготовки. Резец, проходя под заготовкой, обрабатывает фасонную поверхность до требуемого размера, т. е. паироход.  [c.300]

Круглые, призматические и тангенциальные резп,ы выдерживают значительно большее число переточек, чем стержневые, при сохранении формы и размеров режущей кромки.  [c.300]

Льюис и др. [485] измеряли теплоотдачу в радиальном и продольном направлениях от концентрического стержневого вольфра-митового нагревателя наружным диаметром 12,7 мм (2гг) в псевдоожиженном слое внутренним диалхетром 75 мм (2 г ), образованном стеклянными сферическими частицами или продуктами крекинга нефти (сферические частицы размером от 0,149 до0,074аш), взвешенными в воздухе или других газах (фреон-12. Не, СОз, СзНз, Нг). Эффективная теплопроводность в продольном направлении К была вычислена по повышению телшературы АТ по высоте слоя Ь  [c.422]


Нагрев доводят до 100 - 1300°С и выдерживают при этой температуре несколько часов в зависимости от материала, размеров и толщины стенки стержней. Для снижения температуры спекания в стержневую смесь вводят "плавни в корундовые - NaaSiOa (/пл = = 700°С), в кварцевые - основные оксиды СаО, MgO. После охлаждения печи стержни извлекают и передают на участок изготовления моделей. Стержни, спеченные без жидкой фазы, не разупроч-няются при заливке и их можно изготовлять очень тонкими, а спеченные - в присутствии жидкой фазы должны иметь бо.льшую толщину стенки.  [c.236]

Закон Гука, гипотеза плоских сечений и принцип Сен-Венана — все это стадо достоянием инженеров лишь после десятилетий многократных, многовариантных опытов над стержневыми образцами различных материалов. Результатом этих исследований стали также обоснованные правила сравнительных испытаний образцов материалов с точки зрения их прочности и деформационных свойств. Супщствуют национальные и международные стандарты на форму и размер образцов, на конструктивные варианты способов их нагружения, на процедуры самих испытаний.  [c.47]

Нагрев под посадку. Нагрев [юд горячую посадку колес н бандажей относится к низкотемпературному (до 150—400 С) нагреву стали, в связи с чем широко используется частота 50 Гц. Применяются обычные цилиндрические индукторы с магнитопроводом или без него, но чаще нагреватели с замкнутым магнитопроводом (трансформаторного тина). Последние обладают высоким КПД и коэффициентом мощности и позволяют нагревать на частоте 50 Гц даже сравнительно тонкостенные изделия. Трансформаторный нагреватель имеет магнитопровод стержневого, реже броневого типа, вторичным витком которого является нагреваемая деталь. Индуктирующая обмотка располагается обычно на другом стержне из конструктивных соображений, хотя для пов11Инения коэффициента мощности ее лучше располагать снаружи или внутри нагреваемого тела. Для нагрева больших колец (диаметр свыше 100 см) используется несколько трансформаторных нагревателей, располо>1(енных по окружности и подключенных к одной фазе согласно. Мощность установок составляет 10—150 кВт, время нагрева 5—30 мин в зависимости от размеров изделия. Коэффициент мощности достигает 0,6—0,65. При небольших мощностях обмотки многослойные с естественным охлаждением. В некоторых странах (например, ГДР) выпускаются серийные установки для нагрева колес и бандажей под посадку.  [c.223]

Пусть, например, необходимо спроектировать механизм поперечно-строгального станка, точка одного из звеньев которого должна описывать заданную траекторию, соответствующую циклическому возвратно-поступательному движению режущего инструмента при приводе от электродвигателя трехфазного переменного тока. Очевидно, в этом случае оба условия могут рассматриваться как обязательные. Но первое из них определяет вид механизма как механизма направляющего, и потому может быть отнесено к основному требованию. Известно, что электродвигатели общего назначения отличаются сравнительно высокой частотой вращения роторов, близкой к п == 60//р, где f — частота переменного тока (преимущественно [ = 50Яг) р — количество пар магнитных полюсов статора электродвигателя. При р, равном 1, 2, 3, 4, частота синхронного вращения якоря двигателя составляет соответственно 3000, 1500, 1000, 750 об/мин. Это означает, что ведущее звено стержневого механизма, соединяемое с электродвигателем, должно иметь возможность полнооборотного вращения. Следовательно, второе обязательное условие синтеза предопределяет выбор механизма, входное звено которого должно быть полнооборотР1ым, или кривошипным. Это условие хотя и является обязательным, но может рассматриваться как дополнительное ограничение. При этом дополнительным условием, не существенным для постановки задачи, может быть обеспечение желательных габаритных размеров пространства, в котором должен размещаться механизм, и др.  [c.76]

Рис. 3.22. Схема расположения и размеры (в миллиметрах) стержневых электродов, погружаемых в грунт а — электрод Шепарда (Fo=5,2 см) б — электрод Колумбия (fo=3,4 см) в —электрод Веннера (fo=-38 см) / —ми-полам, диаметр 12 мм — специальная сталь Рис. 3.22. <a href="/info/4764">Схема расположения</a> и размеры (в миллиметрах) стержневых электродов, погружаемых в грунт а — электрод Шепарда (Fo=5,2 см) б — электрод Колумбия (fo=3,4 см) в —электрод Веннера (fo=-38 см) / —ми-полам, диаметр 12 мм — специальная сталь
Рис. 8,6. Стандартные стержневые аноды для внутренней катодной защиты резервуаров и труб (размеры —в миллиметрах) / — платинированная поверхность 2 — заливочная смола скочкаст № 281 3 —стеклянная проводка высокого давления с резьбой R1" или NPT1". Значения а, в я I (допустимый ток) для различных типов анодов Рис. 8,6. Стандартные <a href="/info/39795">стержневые аноды</a> для <a href="/info/495131">внутренней катодной защиты</a> резервуаров и труб (размеры —в миллиметрах) / — платинированная поверхность 2 — заливочная смола скочкаст № 281 3 —стеклянная проводка <a href="/info/251457">высокого давления</a> с резьбой R1" или NPT1". Значения а, в я I (допустимый ток) для различных типов анодов
Если прикладываемая нагрузка при повторных ударах не превышает первоначальную, то выступы деформируются упруго, и сближение значительно меньше, чем при первом ударе (при первом ударе сближение определяется в основном исходной шероховатостью поверхности, пределом текучести или твердостью, а при повторных сближение зависит от модуля упругости и геометрии поверхности после первоначальной деформации). Пр-и небольшой внешней нагрузке местные давления на площадках фактического контакта при ударе могут достигать высоких значений и приводить область контакта в состояние пластического течения даже у металлов со значительной твердостью. Высокоскоростная пластическая деформация, которой при ударе подвергаются микровыступы, вызывает их мгновенный разогрев до высоких температур. Небольшие геометрические размеры единичной микронеровности (для шлифованой поверхности /г=10 мкм, г=50 мкм) затрудняют, а иногда делают невозможным непосредственное измерение температуры на ней. В таких случаях применяют моделирование, которое позволяет качественно или количественно исследовать интересущий нас процесс на модели. Исследователи, занимающиеся изучением механических процессов на поверхности контакта, для моделирования микровыступа использовали различные модели в виде тел правильной геометрической формы конусоидальные, стержневые, клиновые, эллипсоидальные, цилиндрические, сферические и др.  [c.129]


Смотреть страницы где упоминается термин Стержневые Размеры : [c.356]    [c.382]    [c.167]    [c.74]    [c.86]    [c.410]    [c.45]    [c.20]    [c.61]    [c.150]    [c.164]    [c.259]    [c.406]   
Справочник технолога-приборостроителя (1962) -- [ c.130 , c.131 ]



ПОИСК



412, 413 стержневые

Пролеты ваграночные — Размеры стержневых отделений

Стержневые ящики 129 — Поверхности наружные — Уклоны формовочные Величины 152 — Размеры



© 2025 Mash-xxl.info Реклама на сайте