Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оценка структуры сварного соединения

Эта задача в сварочной технике решается с помощью методов металловедения. Однако металловедение сварных соединений имеет ряд специфических особенностей по сравнению с классическими методами. Это связано прежде всего с тем, что превращения при сварке протекают в неравновесных условиях, а температура пагрева значительно выше, чем, например, при термической обработке. Резко отличаются при сварке условия кристаллизации, что обусловлено характером тепловых полей, малыми объемами зоны расплавления, а в ряде случаев и дополнительным механическим воздействием. Поэтому подходы к оценке структуры сварного соединения должны быть иными, чем, например, при термической обработке, в литейном производстве и пр.  [c.5]


Металлография дает качественные оценки. Структура сварного соединения не является показателем, характеризующим количественно его свойства. На основании металлографического анализа невозможна и классификация сварных соединений по количеству и характеру дефектов. Количественные оценки заключаются главным образом d определении содержания структурных составляющих.  [c.8]

ОБЩИЕ ОСНОВНЫЕ ПОЛОЖЕНИЯ ДЛЯ ОЦЕНКИ СТРУКТУР СВАРНЫХ СОЕДИНЕНИЙ  [c.30]

Оценка структуры сварного соединения  [c.21]

Для оценки стойкости сварных соединений против образования XT в ОШЗ необходимо действительную структуру (либо максимальную концентрацию диффузионного водорода или максимальное значение нормальной компоненты сварочных напряжений) сопоставить с критической [формула (13.8)]. При этом для указанного анализа необходимо иметь количественные данные обо всех основных факторах, обусловливающих образование XT. Например, при сопоставлении структур требуется учитывать концентрацию диффузионного водорода и значения сварочных напряжений. Количественная оценка структуры ОШЗ  [c.532]

Металл сварного шва по своей структуре и свойствам может заметно отличаться от основного металла, поэтому при оценке жаропрочности сварных соединений должен быть рассмотрен отдельно. Следует также отметить, что швы при работе конструкции, как правило, находятся в наиболее тяжелых условиях из-за конструктивных концентраторов напряжений в вершине и корне и  [c.42]

На качество сварных соединений влияют условия й три группы факторов производственные (технологические, конструкционные и другие, обеспечивающие ход производственного процесса) организационные, устанавливающие порядок, правила и организацию выполнения производственных задач сопутствующие — специфические факторы, характерные для каждого конкретного производства. Каждый фактор характеризуется своими параметрами — факторными параметрами. Параметры бывают положительные, обеспечивающие качество с образованием минимального числа дефектов, и отрицательные, вызывающие систематическое возникновение дефектов. Отрицательные факторы — переменные величины, которые изменяются под действием различных производственных условий. Определение и учет действующих факторов влияния и причин дефектности с последующей их систематизацией — это серьезная производственно-исследовательская работа. Конечным результатом анализа является определение статистической связи между доминирующими причинами и структурой дефектности. При учете и анализе действующих причин важно установить не только качественную, но и количественную связь с вызываемыми ими дефектами. Число дефектов и их структура являются окончательной оценкой качества сварного соединения.  [c.275]


Структура существующей нормативной документации (СНиП, правила контроля и т. п.) регламентирует проведение оценки качества сварных соединений по совокупности ряда информативных признаков координат по сечению и длине шва, истинных или условных размеров дефекта, числа дефектов на единицу длины шва, наименьшего расстояния между дефектами, типу (характеру) дефекта.  [c.166]

При оценке работоспособности сварных соединений нержавеющих сталей с перлитными необходимо прежде всего установить влияние, оказываемое структурой зоны сплавления и наличием в ней переходных прослоек различного характера.  [c.180]

Во многих случаях, в особенности при сварке легированных сталей и различных сплавов, требуется прежде всего получение определенных механических свойств и структуры металла около-шовной зоны и шва, которые зависят от длительности пребывания металла выше определенной температуры, скорости охлаждения в необходимом интервале температур, повторного нагрева и многих других особенностей термического цикла сварки (см. разд. IV). Поэтому оценка эффективности процесса сварки по энергетическим критериям часто оказывается второстепенной. Однако для сталей, мало чувствительных к воздействию термического цикла сварки, оценка эффективности различных режимов сварки по энергетическим затратам необходима. Следует различать сварные соединения двух основных крайних типов соединения, в которых преобладает наплавленный металл (заштрихованные участки на рис. 7.20, вверху), и соединения, образуемые преимущественно в результате расплавления основного металла (рис. 7.20, внизу). Для последнего типа соединений, например стыкового, тепловую эффективность процесса целесообразно характеризовать удельной затратой количества теплоты на единицу площади свариваемой поверхности  [c.232]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]

Для оценки работоспособности сварных конструкций, работающих при высоких температурах, существенным является также сохранение стабильности структуры и свойств сварного соединения в условиях длительного старения. Исследование его структуры после длительных выдержек позволяет выяснить кинетику структурных превращений в различных зонах, выявить причины снижения работоспособности и наметить пути к ее повышению. Поэтому обычно шлифы сварного соединения подвергаются различным выдержкам при рабочей температуре. С целью скорейшего получения данных о характере структурных изменений при рабочей температуре за заданный срок работы энергоустановки (100 ООО час.) образцы подвергаются старению и при более высоких температурах. Стабильность свойств сварного соединения при высоких температурах проверяется, как правило, на разрывных образцах с надрезом, расположенным в той или иной его зоне.  [c.24]


Сварные соединения разнородных сталей при температуре эксплуатации выше 400—450° работают в заметно более тяжелых условиях. При этих температурах возможно развитие в зоне сплавления переходных структур диффузионного характера, приводящее к снижению работоспособности конструкции. При высокой температуре и большом числе циклов ее изменения необходимо учитывать термические напряжения, обусловленные разностью коэффициентов линейного расширения свариваемых материалов. Поэтому выбор сталей, сварочных материалов, типа конструкции и оценка ее работоспособности при температуре эксплуатации выше 400—450° представляет сложную задачу и требует учета ряда факторов, главные из которых приведены в данном параграфе. Основные положения расчета приведены в п. 3 главы И1. Типовые конструктивные решения для различных узлов из разнородных сталей даны в главах VI, УП и IX.  [c.51]

Свариваемость — способность материала образовывать неразъемные соединения с требуемыми механическими характеристиками. Ее оценивают сравнением свойств основного материала со свойствами сварных соединений, количеством способов сварки, диапазоном допускаемых режимов сварки и др. Свариваемость считается тем выше, чем больше способов сварки может быть применено, шире пределы допускаемых режимов сварки. Для технологической оценки свариваемости определяют структуру, механические свойства и склонность к образованию трещин материала шва и околошовной зоны.  [c.114]

Прибор для оценки структуры металлов и сплавов, сварных соединений нержавеющих сталей, для оценки твердости, пористости и других физико-механических свойств различных материалов  [c.386]

МЕТОДЫ ОЦЕНКИ СТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ СВАРНЫХ СОЕДИНЕНИЙ  [c.393]

Обычно металл сварного соединения по химическому составу и структуре заметно отличается от основного металла, что отражается на его прочностных и других специальных характеристиках. Поэтому в комплекс оценки свариваемости входит определение механических свойств металла шва и сварного соединения при различных температурах, а также стойкости против коррозии, износа и пр.  [c.42]

Оценка структуры и свойств сварных соединений в зависимости от тепловых условий сварки  [c.52]

Предварительную оценку влияния термического цикла сварки на изменение структуры и свойств свариваемого металла проводят путем специальных исследований, предусматривающих нагрев и охлаждение образцов по программе с заданными скоростями и механические испытания после такой обработки (например, метод ИМЕТ-1). Испытания позволяют имитировать сварочные термические циклы любого участка сварного соединения и выявлять их воздействие на структуру и свойства металла.  [c.52]

Разрушающие (лабораторные) методы контроля, применяемые для оценки состава, структуры и свойств сварных соединений, включают в себя химический анализ, механические испытания и металлографические исследования Эти виды контроля выполняют на материале специальных образцов — свидетелей, которые подвергаются тем же технологическим воздействиям, что и материал в изделии. В исключительных случаях для разрушающего контроля может быть использовано само изделие.  [c.378]

Оценка работоспособности сварных конструкций, предназначенных для высокотемпературного использования, представляет весьма сложную проблему, охватывающую комплекс лабораторных и стендовых испытаний с учетом опыта эксплуатации. Большое число различных факторов, определяющих поведение материалов и их сварных соединений при высоких температурах — развитие процесса ползучести, изменение структуры и свойств во времени, возможность хрупких межзеренных разрушений и другие особенности высокотемпературного деформирования — не позволяет ограничиться проведением лишь определенной узкой группы испытаний, а требует постановки широкого исследования, охватывающего оценку основных свойств жаропрочности.  [c.104]

Ранее было показано, что свойства сварных соединений при высоких температурах в существенной степени зависят от их структуры и степени неоднородности, обусловленных воздействием термодеформационного цикла сварки. Поэтому проведению испытаний, оценивающих собственно жаропрочные характеристики, должна предшествовать оценка свариваемости сталей с целью получения сведений о степени изменения свойств материала, вызванного сваркой. Особое значение при этом следует уделять определению степени нестабильности структуры различных зон сварного соединения и изменению свойств околошовной зоны, являющейся наиболее вероятным местом появления хрупких разрушений при высоких температурах. Сами же высокотемпературные испытания должны проводиться на образцах сварных соединений, выполненных при тех же режимах и при той же толщине и жесткости свариваемых элементов, как и на реальных изделиях.  [c.104]

В комплекс основных характеристик, подлежащих определению при оценке свойств жаропрочности сварных соединений, так же как и металла конструкций, входят сопротивление ползучести и релаксационная стойкость длительная прочность и пластичность стабильность структуры и свойств в процессе выдержки при рабочей температуре.  [c.109]

Одной из основных характеристик материалов, определяющих их жаропрочность, является стабильность их структуры и свойств при высоких температурах. Для определения характера идущих при высоких температурах структурных превращений используются методы металлографического исследования с помощью оптического и электронного микроскопов, фазового и рентгеноструктурного анализа, а также вакуумной металлографии. Задачей этого комплекса исследований является установление механизма структурных превращений и характера образующихся фаз, кинетики их развития, а также температурного интервала, в котором идут эти процессы. С этой целью образцы подвергаются выдержкам не только при рабочей, но и при других температурах, причем, как и при испытаниях на длительную прочность, максимальная длительность старения образцов должна быть не менее чем на порядок меньше ресурса работы изделия. При более высоких температурах, чем рабочая, максимальная длительность выдержки может быть соответственно уменьшена. Так, для оценки процессов старения сварных соединений, предназначенных для работы в течение 10 ч при 600° С максимальная выдержка образцов при этой температуре не должна быть менее 10 ч при 650° С не менее 3-10 ч, а при 700° С не менее 500 ч. Соответственно должны меняться и промежуточные выдержки. Для рассматриваемого случая желательно их принимать следующими при 600° С —  [c.119]


Оценка влияния абсолютных размеров на сварные соединения при циклических нагрузках усложняется вследствие гетерогенности сварного соединения (как по механическим свойствам, так и по структуре), наличия сварочных остаточных напряжений и концентрации напряжений, вызываемой геометрической формой шва и технологическими дефектами. Указанные факторы сильно затрудняют моделирование сварных деталей и элементов сооружений.  [c.38]

При решении поставленной задачи прогнозирование сроков службы сварных соединений паропроводов включает комплекс необходимых методов оценки ресурса с учетом особенностей изменения структуры и свойств металла, в том числе  [c.199]

Индивидуальный ресурс рассматривается как максимальное приближение во времени к предельному состоянию элементов паропроводов (например, трубных элементов, сварных соединений) при сохранении требований к их надежной эксплуатации. Сроки индивидуального ресурса устанавливаются из результатов углубленного диагностирования (с оценкой структуры, свойств и накопленной поврежденности металла), анализа условий эксплуатации, фактических размеров и особенностей конструкции сварных деталей (изделий), а также расчетной оценки напряженного состояния и анализа повреждения сварных соединений.  [c.202]

Непременным условием в получении достоверных искомых результатов по оценке ресурса (при подкупающей относительной простоте метода) является использование сварных соединений (до и после эксплуатационной наработки) идентичного исходного состояния по структуре и свойствам, что во многих случаях представляется трудновыполнимым или вообще нереальным мероприятием. Нарушение этого условия неизбежно сопряжено с получением приближенного результата.  [c.237]

Сварные соединения паропроводов до проведения ВТО и после подвергаются контролю различными методами с оценкой качества, структуры и свойств (табл. 5.6). При контроле до проведения ВТО основная цель состоит в отбраковке дефектных сварных соединений (по показателям качества и микроструктуры) и в подтверждении соответствия остальных соединений требованиям качества и микроструктуры, которые могут быть допущены к восстановительной термообработке.  [c.294]

Вырезка I для оценки структуры и свойств сварного соединения (СС) после проведения ВТО  [c.295]

При контроле после ВТО ставится цель в установлении комплекса нового уровня свойств регенерированной микроструктуры с оценкой нового срока службы. Одновременно отбраковываются сварные соединения с выявленными неудовлетворительными свойствами и/или структурой. И при необходимости такие соединения подвергаются повторной ВТО или перевариваются.  [c.296]

Оценка строения и структуры сварных соединений позволяет в большинстве случаев характеризовать их качество и свойства, а также наметить пути управления структурными и фазовыми превращеипями. Эго создается регулиро ванпем параметров сварочного процесса с целью получения конструкций с заданными эксплуатационными свойствами, не содержащих дефектов.  [c.5]

Поверхность пластин под сварку подготовляли также, как и при первых испытаниях. Были выбраны следующие расстояния между пластинами 5 7 9 И 13 17 и 19 жж. Для оценки качества сварных соединений проводили механические испытания на разрыв, макроисследования характера и размеров волн, микроносле-дования структуры зоны соединения.  [c.51]

Испытание на ударный изгиб. В комплексе механических испытаний, выполняемых для оценки свариваемости, испытание на ударный изгиб имеет особо важное значение. Оно является основным показателем для выбора параметров режима сварки (погонной энергии) при валиковой пробе, для оценки стойкости сварных соединений прн низких температурах (порог хладноломкости) и в других случаях. В зависимости от цели испытания надрез делается (на предва-[1Ительно протравленных образцах) по металлу шва, линии сплавления, околошовному участку или другим участкам зоны термического влияния. Для определения ударной вязкости в зависимости от толщины основного металла при.ченяются образцы разного сечения с полукруглым или острым надрезом (см. гл. XXVI). Для получения порога хладноломкости используют стандартные образцы с полукруглым надрезом (образцы Менаже). На каждое значение температуры испытывается 3—5 образцов. Результаты испытаний наносятся на график. Порог хладноломкости можно также оценить по виду излома ударных образцов. В этом случае определяется процент кристалличности в изломе. Установлено, что соотношение площадей кристаллической и волокнистой структуры в изломе изменяется нро-порционалыю ударной вязкости.  [c.19]

Для оценки влияния термического цикла сварки па структуру и свойства различных зон сварного соединения рассмотрим нсев-добинарную диаграмму состояний Fe — С — Si, связав ее с распределением температур в шве и околошовной зоне (рис. 152). Шов представляет собой металл, полностью расплавлявшийся. В зависимости от скорости охлаждения структура его будет представлять собой белый или серый чугун, с различным количеством структурно-свободного углерода.  [c.325]

Косвенные способы позволяют оценивать склонность к трещинам расчетным путем по химическому составу стали без испытания сварных соединений. Один из таких способов — оценка потенциальной склонности стали по значению эквивалента углерода Сэкв [см. (13.5)]. Значение Сэкв характеризует прокаливае-мость стали, т. е. пропорционально ее критическим скоростям охлаждения, обусловливающим закалку ш 2 и w ]. При заданном термическом цикле чем больше Сэкв, тем больше содержание закалочных составляющих в структуре в ЗТВ. Однако Сэкп не учитывает их свойств, например, тетрагональности и твердости мартенсита, которые определяются содержанием углерода. Следовательно, учитывая (13.5), Сзкв можно использовать в качестве сравнительного количественного показателя потенциальной склонности различных марок стали к образованию трещин при условии, что содержания С и концентрации Нд в них равны. По данным практики, при Сэкв >0,45% стали часто становятся потенциально склонными к образованию трещин.  [c.537]

Большинство авторов данной монографии принимали активное участие в работе Научно-методической комиссии по стандартизации в области механики разрущения. Основополагающим принципом работы комиссии после положительного опыта проведения базового эксперимента стала организация предварительных сериальных испытаний образцов по оценке влияния различных факторов на конечные результаты испытаний. В монографии представлена часть результатов таких испытаний по широкому комплексу вопросов статической, циклической и динамической трещиностойкоети, особенностей структуры и технологии получения конструкционных материалов. Это относится к исследованиям характеристик упругопластического разрущения сталей (гл. 1) и алюминиевых сплавов (гл. 7), определению характеристик трещиностойкоети малоуглеродистых сталей при динамическом распространении трещины (гл. 1), разработке методов испытаний листового проката на слоистое растрескивание (гл. 4) и сварных соединений на трещиностойкость (гл. 3, 4), комплексным испытаниям на трещиностойкость плакированных сталей (гл. 5). Исследования в указанных направлениях во многом были инициированы заданиями Научно-методической комиссии по стандартизации в области механики разрушения. Полученные результаты в дальнейшем использовались при подготовке соответствующих нормативных документов и проведении поверочных раечетов на трещиностойкость различных технических систем и конструкций.  [c.8]


Для характеристик трещиностойкости сварных соединений, представляющих собой гетерогенные структуры, наиболее приемлем закон распределения Вейбулла [7-9]. Для проверки этого проведена оценка согласия эмпирических функций распределения, полученных при испытаниях серий (10-17 шт.) образцов, с моделью (2.17). Построение эмпирических функций распределения F(J(.) на вероятностной сетке вейбулловского закона показывает (рис. 2.19, 2.20, 3.4, 3.5), что они укладываются в прямые линии и удовлетворительно описываются моделью (2.17). В ряде случаев, например для описания распределения критических значений раскрытия трещины 5 , сварных соединений и сталей SM50 и НТ80, использовалось [10, 11] трехпараметрическое распределение Вейбулла  [c.83]


Смотреть страницы где упоминается термин Оценка структуры сварного соединения : [c.573]    [c.7]    [c.23]    [c.173]    [c.30]    [c.52]   
Смотреть главы в:

Сварка и резка в промышленном строительстве  -> Оценка структуры сварного соединения



ПОИСК



МЕТОДЫ ОЦЕНКИ СТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ СВАРНЫХ СОЕДИНЕНИЙ

Методы оценки влияния режимов сварки и последующей обработки на структуру и свойства сварных соединений

Общие основные положения для оценки структуры сварных соединений

Оценка влияния режимов сварки и последующей обработки на структуру и свойства сварных соединений

Оценка структуры и свойств сварных соединений в зависимости от тепловых условий сварки

Структура сварных соединений



© 2025 Mash-xxl.info Реклама на сайте