Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Получение стали в электрических печах

Каково преимущество получения стали в электрических печах  [c.74]

Получение стали в электрических печах  [c.49]

ПОЛУЧЕНИЕ СТАЛИ В ЭЛЕКТРИЧЕСКИХ ПЕЧАХ  [c.69]

Электросталеплавильный процесс — более совершенный способ выплавки стали, имеющий ряд преимуществ по сравнению с мартеновскими и конвертерными способами. В электрических печах легко регулировать тепловой режим, изменяя параметры электрического тока. Температура при плавке достигает 2000° С, что позволяет использовать высокоосновные шлаки для наиболее полного удаления из металла серы и фосфора. Отсутствие окислительной атмосферы способствует получению хорошо раскисленной стали. В электрических печах выплавляют наиболее высококачественные углеродистые и легированные конструкционные, нержавеющие, жаропрочные и другие стали и сплавы. В дореволюционной России производство электростали было очень небольшим. В настоящее время ее выплавка составляет около 12 млк. т., т. е. примерно 10% всего производства стали. В текущем пятилетии ее производство будет увеличено в 1,6 раза.  [c.53]


При восстановлении железа газом руда сначала подвергается дроблению, а затем размолу в шаровой мельнице до величины гороха и обжигается в печи при температуре около 850°. После этого во вращающейся печи барабанного типа производится восстановление железа окисью углерода. Полученная масса охлаждается на специальном конвейере, затем размалывается на мельнице и пропускается через магнитный сепаратор для отделения от металла пустой породы руды. Полученный металл в брикетированном виде употребляется. 3 качестве сырья для выплавки стали в электрических печах, а также для прессования изделий в порошковой металлургии.  [c.76]

Электрометаллургический способ получения стали. Сталь наиболее высокого качества выплавляют в электрических печах, которые могут быть дуговыми (нагрев осуществляется теплом электрической дуги) и индукционными (нагрев осуществляется токами высокой частоты). Окисление расплава в этих печах происходит за счет кислорода воздуха и за счет добавления окислителей (небольшого количества железной руды). В электрических печах получают высококачественные конструкционные, инструментальные, нержавеющие, кислотостойкие, электротехнические и другие специальные стали. В электрических печах можно  [c.24]

КИСЛЫЙ ПРОЦЕСС, получение стали в мартеновских печах, электрических печах и в конвертере, футерованных кислыми огнеупорными материалами. В конвертере К. п. ведется продувкой чугуна, а в печах—плавкой смеси чугуна с железом. Наличие кремнистой футеровки исключает возможность применения основного флюса в процессе передела. Благодаря этим условиям удаление в шлак фосфора и серы из металлич. ванны делается невозможным, вследствие чего в передел идут чистые сырые материалы. Такие материалы обходятся дорого и не везде м. б. получены в требуемом количестве. При К. п. в мартеновской печи сгорание вредных примесей железа идет медленнее чем при основном процессе (см.). Этими обстоятельствами объясняется факт постепенного упразднения К. п. на металлургических з-дах разных стран. Лишь для Англии и Швеции  [c.134]

И действительно, как и предвидел Д. И. Менделеев, проблема связанного азота стала одним из ведущих направлений развития химии и химической технологии в конце XIX — начале XX в. В результате упорного труда ученых и инженеров проблема связанного азота была успешно осуществлена в рассматриваемый период. В основу разработанной технологии были положены 3 способа фиксации азота синтезом азотной кислоты из воздуха в электрической дуге связыванием атмосферного азота в электрических печах с получением азотсодержащего продукта — цианамида кальция , каталитическим синтезом аммиака из азота и водорода под высоким давлением.  [c.158]


При достаточно дешевой электроэнергии атомных электростанций можно было бы широко использовать ее в целом ряде других производственных процессов, как, например, при выплавке стекла, для получения стали не в мартенах, а в электрических печах либо методом восстановления же-  [c.260]

Выплавка качественных, легированных сталей успешно производится в электрических дуговых печах, обеспечивающих легкость регулирования теплового режима, возможность получения высоких температур, минимальный угар дорогих легирующих элементов и возможность создания восстановительной атмосферы. Некоторые марки стали вообще можно получать только в электрических печах.  [c.246]

Наиболее эффективным методом получения электростали является так называемый дуплекс-процесс. При этом методе сталь выплавляется в электрических печах из жидкого полупродукта, который подготовляется в конвертере с кислородным дутьем.  [c.58]

Сталь получают из чугуна путем удаления из него части углерода и понижения содержания вредных примесей — фосфора и серы, что может быть выполнено различными способами бессемеровским, мартеновским и в электрических печах. Наибольшее распространение имеет мартеновский способ получения стали путем переплавки чугуна и стального лома.  [c.268]

В электрических печах тепло, необходимое для плавления исходных материалов, получается за счет электрической энергии. Значительно более высокая температура (2000°С и более) в электрических печах по сравнению с другими плавильными печами обеспечивает получение высококачественных легированных сталей с присадками тугоплавких металлов (вольфрама, ванадия, молибдена и др.).  [c.78]

Получение стали в дуговых электрических печах имеет неоспоримые преимущества, важнейшие из которых —очень высокое качество получаемой стали, возможность выплавлять любые марки стали, включая высоколегированные, тугоплавкие и жаропрочные. Электрические печи обеспечивают минимальный угар железа по сравнению с другими сталеплавильными агрегатами и, что особенно важно, минимальное окисление дорогостоящих легирующих присадок благодаря нейтральной атмосфере в печи. Следует отметить удобство регулирования температурного режима и легкость обслуживания этих печей.  [c.52]

Сталь представляет собой деформируемый (ковкий) сплав железа с углеродом и неизбежными по способу получения стали примесями марганца, кремния серы, фосфора и других элементов. Обычные сорта стали, применяемые в промышленности, содержат от 0,05 до 1,5% углерода. Основные способы получения стали — в мартеновских или в электрических печах, а также в бессемеровских или томасовских конвертерах.  [c.100]

Наиболее распространенным способом получения многих марок стали является мартеновский, а высококачественные стали выплавляют в электрических печах.  [c.16]

Выплавка стали в вакуумных электрических печах. Выплавка стали в вакуумных печах обеспечивает получение стали с низким содержанием растворенного кислорода и меньшей загрязненности неметаллическими включениями, значительное удаление серы в виде газообразных соединений или элементарной серы, а также снижение содержания азота и водорода. Такие стали и сплавы обладают более высокой чистотой, лучшими механическими свойствами и лучшей пластичностью в гО рячем и холодном состоянии. Нержавеющие стали, выплавленные в вакууме, обладают повышенной коррозионной стойкостью, а подшипниковые и низколегированные стали — более высоким сопротивлением усталости.  [c.169]

В металлургическом производстве выплавляемую в сталеплавильных агрегатах (конвертерах, мартеновских и электрических печах) сталь выпускают в сталеразливочные ковши и затем разливают в металлические формы-изложницы. Основная масса выплавляемой стали (95 - 97%) поступает в разливочное отделение сталеплавильных цехов, где из нее получают слитки. Несмотря на все увеличивающееся внедрение непрерывных способов разливки, все же значительное количество стали будет разливаться в изложницы, например, при получении крупнотоннажных слитков. Качество изложниц, продолжительность их службы определяют качество слитка и стоимость конечной продукции. Разнообразие конструкций и типоразмеров изложниц предъявляет существенные (иногда определяющие) требования к выбору материала и технологии их изготовления.  [c.337]


При изучении такого широкого спектра процессов замещения одним из основных вопросов является выбор единиц измерения. Например, массой в качестве единицы измерения можно пользоваться в случае, когда сравниваются способы производства, приводящие к получению одного и того же продукта, например стали в мартенах или конверторах. Для того чтобы установить оптимальные эквивалентные единицы, каждый процесс замещения следует рассматривать индивидуально. Так, электрические дуговые печи используются, в основном, для производства легированных сталей. Поэтому при построении модели замещения предпола-64  [c.64]

В 1910 г. во всех странах мира работали 114 электрических печей. В 1915 г. их было уже 213, а к началу 1920 г. выплавляли сталь 1025 электропечей и 362 агрегата находилось в стадии монтажа и наладки. В развитых странах, богатых электроэнергией, производство электростали росло особенно быстрыми темпами. В США, например, производство стали в электропечах только за 4 года, с 1914 по 1918 г., возросло с 24 до 800 тыс. т, т. е. в 3.3 раза. Аналогичная картина наблюдалась в Германии и Канаде [19, с. 11]. В этот же период электропечи нашли широкое применение для получения ферросплавов, выплавки цветных металлов, а также в химической промышленности — для производства карбида кальция, фосфора и других продуктов.  [c.133]

Плавка в дуговых и индукционных электрических печах. Такая плавка является важнейшим способом получения стали высокого качества для производства ответственных деталей машин и инструментов. Она имеет ряд преимуществ перед мартеновской и кислородно-конвертерной. Электропечь быстро нагревается до заданной  [c.88]

Получение стали в электрических печах обладает рядом преимуществ по сравнению с конвертерным и мартеновским. В электрических печах тепло получается за счет электрической энергии, благодаря чему в атмосфере печи мало кислорода. Это дает возможность получать сталь с минимальным содержанием вредных примесей и особенно закиси железа. Кроме того, в электрических печах температура, достигающая 3500°, обеспечиваег получение высококачественных легированных ста-  [c.19]

Джекобе и сотр. ]18, 19] описали работу установки Горного бюро в Боулдер-Сити (штат Невада) эксплуатационные показатели приводятся в табл. 4. Большая часть продукции, полученной на этой установке, использовалась для проведения опытных плавок стали в электрических печах. На установке перерабатывались бедные руды, добываемые в СШ/. Работа установки была улучшена на основе опыта Ноксвилльского завода.  [c.391]

При восстаповлении железа твердым углеродом руда дробится до кусков величиной 5—6 мм и смешивается с отбросами топлива (древесного угля, дерева, торфа, каменного угля, кокса, антрацита и др.). Смесь поступает в печи, подобные коксовальным, нагревается при помощи газов в струе воздуха и постепенно опускается до зоны с температурой в 1000 ", где восстановленное губчатое железо охлаждается воздухом и выгружается из печи. Полученное губчатое железо употребляется в качестве сырья при выплавке высококачественных сталей в электрических печах.  [c.76]

Электроплавка — наиболее совершенный способ получения стали, имеющий ряд преимуществ по сравнению с производством стали в конвертерах и мартеновских печах. Простота регулировки теплового режима и высокие температуры процесса позволяют использовать шлаки высокой основности, что облегчаеч более полное удаление вредных примесей. Восстановительная атмосфера печи способствует глубокому раскислению стали. В электрических печах выплавляют высококачественные конструкционные, инструментальные, коррозионносюйкне, жаростойкие и другие специальные стали и сплавы.  [c.29]

В электрических печах (рис. 47) можно выплавлять стали практичеоки любого состава с добавкой легирующих элементов и с низким содержанием серы. Процесс выплавки стали в электрических печах ведут в окислительной, восстановительной или нейтральной атмосфере, а также в вакууме. В электрических печах наиболее благоприятны условия для получения стали с низким содержанием газов и неметаллических включений. Поэтому этот способ применяется при выплавке наиболее ответственных  [c.168]

Сочетание высокой прочноегп и пластичности этих чугуиов позволяет изготавливать из них ответственные изделия. Так, коленчатый вал легковой машины Волга изготавливают из высокопрчного чугуна, имеющею состав 3,4—3,6% С 1,8-2,2% Si 0,96—1,2% Мл 0,16-0,30% Сг <0,01% S <0,06% Р и 0,01—0,03% Mg. Чугун со столь узкими пределами по элементам и низким содержанием серы и фосфора выплавляют не в вагранке, а в. электрической печи. Это обстоятельство, а также применение термической обработки приводит к получению еще более высоких свойств, чем это указано л табл. 24, а именно ац = 62-н65 кгс/мм б = 8- -12% и твердость НВ 192—240. Хотя этот чугун но механическим свойствам и уступает стали констру - тивная прочность коленчатого вала из такого чугуна может быть выше, что в целом уменьшит массу машины. Из чугуна, обладающего лучшими, чем у стали, литейными свойствами, можно литьем (дешевым способом) изготавливать изделия сложной конфигурации (с внутренними полостями и т, п,), обладающие лучшим сопротивлением разнообразным механи-ческн. воздействиям, чем более простые по форме кованые детали, Дру ими словами, в ряде случаев деталь сложной конфигурации из менее прочного материала (чугуна) конструктивно оказывается более прочной, простой по конфигурации детали из более прочного материала (стали).  [c.218]

Во зремя опыта отполированные образцы стали вводились в фарфоровую трубку и помещались вместе с ней в электрическую печь сопротивления. Струей чистого сухого водорода из аппарата вытеснялся воздух. Затем температуру печи поднимали до нужной величины и в фарфоровую трубку на несколько секунд вводили хлористый водород, который протравливал полированную поверхность образцов, фиксируя структуру сталей при заданной температуре. После этого аппарат охлаждался. Однако изображение, вытравленное на поверхности шлифа, при высокой температуре сохранялось без изменения и могло быть рассмотрено в микроскоп. Указанный метод получения чисто аустенитпой структуры,—писал А. А. Байков в той же статье,— представляет более широкий интерес, так как этот метод позволяет изучать структуру металлов при различных тегипературах Следует сказать, что и сейчас ои широко используется в металлографических лабораториях при изучении структуры сплавов. При этом отполированные образцы нагреваются в герлхетичоски  [c.172]


В 1864 г. в Европе появились первые мартеновские печи, в которых расплавление чугуна, окисление его примесей производили в подовых (отражательных) печах. Печи работали на жидком и газообразном топливе. Газ и воздух подогревали теплом отходящих газов. Благодаря этому в печи развивались настолько высокие температуры, что стало возможны.м на поду ванны иметь не только жидкий чугун, но и поддерживать в жидком состоянии более тугоплавкое железо и его сплавы. В мартеновских печах начали получать из чугуна сталь любого состава и использовать для переплава стальной и чугунный лом. В начале XX в. появились электрические дуговые и индукционные печи. В этих печах выплавляли легированные высококачественные стали и ферросплавы. В 50-х годах XX в. начали использовать процесс передела чугуна в сталь в кислородном конвертере продувкой чугуна кислородом через фурму сверху. Сегодня это наиболее производительный метод получения стали. В последние годы появились значительно усовершенствованные по сравнению с прошлым процессы прямого получения железа из руды.  [c.10]

Электропечи бывают дуговые и индукционные. Наиболее распространены дуговые. Они питаются переменным трехфазным током и имеют три вертикально расположенных электрода, между ними и металлом возникает электрическая дуга (рис. 3.6). Электрический ток (напряжением 160-600 В и си-Рис 3.6. Дуговая электропечь, лой - 10 кА) подводится к 1 - электрод 2 - кабель электродам кабелями и электродержателями. Печь имеет съемный свод, рабочее окно, днище и выпускные отверстия со сливным желобом. В России работают печи вместимостью 10,15, 20, 200, 300 и 400 т. Материалами для получения стали в электропечи служат металлический лом, легированные отходы и небольшая часть передельного чугуна для науглероживания стали. Для образования шлака применяют известняк, све-жеобожженную известь. После окончания завалки электроды опускают вниз и включают ток, возникает электрическая дуга с температурой 3500 °С, начинается расплавление материалов. В процессе плавления окисляются кремний, марганец и фосфор их оксиды соединяются с  [c.89]

Плавка в электрических печах. Такая плавка является важнейшим способом получения стали высокого качества для производства ответственных деталей машин 1 инструментов. Она имеет ряд преимуществ перед мартеновской и кислородно-конверторной. Электропечь быстро нагревается до заданной температуры — 2000 °С. Легко регулируется тепловой процесс. Изменяя количество электроэнергии, можно регулировать температуру в печи. Кроме того, можно создать окислительную или восстановительную атмосферу или даже вакуум. В элек-  [c.52]

В. М. Цитвер, М. И. Клебанова провели работу по сопоставлению проектных технико-экономических показателей производства электрической и мартеновской стали в условиях работы 180-т электропечей на твердой завалке и 250-т мартеновских печей на жидком чугуне с применением природного газа и кислорода и установили, что получение спокойной углеродистой стали в мартеновских печах большой емкости, работающих на жидком чугуне при отоплении природным газом, как правило, выгоднее, чем в электрических печах. Электрический металл может получаться дешевле мартеновского сравнительно редко—лишь при высокой (более 25 руб./ т) себестоимости жидкого чугуна, складывающейся в данном экономическом районе, и при большом разрыве в стоимости чугуна и скрапа (от 7 руб.1т и выше), что н е может быть характерным для основных металлургических районов нашей страны. Снижение отпускных цен на электроэнергию с 0,7 до 0,4 кол/кбг. ч при сохранении неизменными прейскурантами цен на природный газ и мазут не изменяет этого вывода.  [c.239]

ОСНОВНОЙ ПРОЦЕСС, процесс получения стали в печах с основной футеровкой (из доломита или из магнезита) в присутствии основного флюса (известняка или жженой извести). О. п. введен в металлургич. практику в 1879 г. англичанином С. Томасом, выработавшим -способ продувки фосфористого чугуна в конвертере с доломитовой набойкой в присутствии жженой извести. С 1880 года стали делать основные поды в мартеновских печах чем было положено начало быстрому развитию мартеновского процесса, задеряшвавшемуся раньше необходимостью иметь чистые в отношении фосфора и серы исходные материалы для получения хорошей стали (см. Кислый процесс). О. п. теперь ведется как в основных конвертерах (томасовский конвертер), таки на поду мартеновских и электрических печей. Но продувка в конвертере требует чугуна определенного состава (малокремнистого с 1,8% Р), который м. б. получен из руд немногих месторождений, тогда как мартеновские печи перерабатывают всякого рода лом металлический (см.) с чугуном разнообразного состава, причем соотношение между чугуном и мягким металлич. ломом меняется в самых широких пределах, находясь в зависимости от экономич. условий. Для чу Гунов, загрязненных фосфором и серой, выработаны различные методы работы, гарантирующие получение продукта, удовлетворяющего требованиям спецификаций. О. п. в электрических печах служит пока для производства сравнительно незначительного количества высококачественной стали, почти лишенной серы и фосфора. м. Павлов.  [c.132]

Соверщенствуются и получают распросг-ранение методы получения стали, сочетающие процессы металлизации железорудного сырья с последующей переплавкой его в электрических печах.  [c.109]

В настоящее время электротех1Ническую сталь высших сортов чаще всего выплавляют в электрических печах. При выплавке стали добиваются заданного содержания кремния и минималыного содержания углерода (обычно 0,06%) и других примесей, орячей прокаткой из стали получают лист (подкат) толщиной до 2,5 мм. Этот подкат подвергают обезуглероживающему отжигу при 800°С, в результате которого содержание углерода в стали снижается примерно до 0,02%. После этого производят холодную прокатку еа толщину листа 0,36— О, 50 мм с последующим отжигом для снятия напряжений и укрупнения зерна. Последний отжиг ведут при 1 100 12 00 С в атмосфере водорода или нейтрального газа. При значительных степенях обжатия (45— 60%) получается хо рошо выраженная текстурованная структура если деформация была менее 7%, то получается так называемая малотекстурованная структура. Листовая электротехническая сталь, полученная только путем горячей прокатки, не имеет текстуры и магнитные свойства ее вдоль и поперек прокатки одинаковы.  [c.149]

Условия выплавки и микросостав шарикоподшипниковой стали ШХ15 существенно влияют на величину зерна аустенита и склонность его к росту при нагреве. Для сталей, полученных в открытых мартеновских и электрических печах, это зависит от содержания азота и алюминия и их количественного соотношения для сталей электрошлакового переплава — от состава применяемого флюса, определяющего содержание остаточного алюминия в металле для сталей после вакуумного дугового переплава величина зерна аусте-нита и прокаливаемость зависят от содержания алюминия и азота в исходном металле [15].  [c.32]

Развитие электрометаллургии и электрохимических производств с использованием электронагрева стало возможным после создания качественных и экономичных электрических печей. Одна из наиболее ранних попыток построить электрическую печь относится к 1815 г. Кусок стали, помещенный в специальную камеру, был нагрет проходящим по нему током. Это была печь сопротивления прямого действия. Подобного рода печь промышленного значения была создана в 1884 г. братьями Коульс в США для восстановления алюминия и получения его сплавов.  [c.65]


Первые электрические печи для выплавки стали устанавливали, как правило, в районах, где можно было получить наиболее дешевый электрический ток, используя для этого гидроэнергию рек, находящихся поблизости. В 1898 г. итальянский инженер Э. Стассано взял патент на получение в электропечи литой ковкой стали с любым содержанием углерода. Его печь была установлена в Северной Италии, богатой водными ресурсами. В 1899 г. француз П. Эру запатентовал свою конструкцию сталеплавильной электропечи с электродами, расположенными над ванной. Первая печь Эру была построена в Савойе, в предгорьях Альп. Этот город на юго-востоке Франции и поныне является одним из центров французской электрометаллургии. В 1900 г. в Швеции была пущена первая индукционная электропечь конструкции Челлина. Важнейшее преимущество индукционной печи по сравнению с другими электронлавиль-ными и нагревательными агрегатами состоит в том, что тепловая энергия возникает в самом нагреваемом материале за счет энергий электрического тока, проходящего по первичной обмотке. В индукционных печах обеспечивается наиболее равномерный прогрев металла и исключается вредное воздействие газов, образующихся в обычных печах от сгорания топлива или угольной дуги.  [c.131]

Поковки изготавливают из спокойной стали, выплавленной в мартеновских или электрических печах, а такн<е из стали, полученной электро-шлаковым или вакуумно-дуговьм переплавом.  [c.209]

Электросталеплавильные цехи имеются на многих металлургических заводах с полным циклом в основном для получения высококачественных сталей. Практически все ферросплавы производят в электропечах на ферросплавных заводах. Электропечи дают жидкую сталь на передельных заводах, на которых исходным сырьем является металлолом. На электропечах базируется получение стали прямо из специально подготовленного рудного сырья, минуя доменный процесс. Работают электропечи циклично — загрузка, разогрев шихты, плавление, выдача стали. Продолжительность так называемого оборота печи 3,0—6,0 ч. Единичная электрическая мощность печей составляет 6—22 МВт. Самая крупная в СССР электропечь садкой металлошихты 200 т имеет максимальную электрическую мош,ность 22 МВт. Удельный расход электроэнергии составляет от 600 до 8000 кВт-ч на 1 т стали. Отходяш,ие газы электросталеплавильных печей имеют температуру на выходе из печи 900—1000° С и являются практически негорючими. Их физическую теплоту наиболее целесообразно использовать для предварительного подогрева шихты перед загрузкой ее в печи. Расчеты показывают, что при двухступенчатом подогреве металлошихты отходящими газами печи удельный расход электроэнергии может быть снижен более чем на 30%. Существенно увеличивается производительность электропечи благодаря сокращению продолжительности ее разогрева. Улучшаются условия очистки сбрасываемых в атмосферу газов от печи. Снижается удельный расход электродов, из металлошихты выгорает масло и ряд других засоряющих шихту веществ.  [c.39]


Смотреть страницы где упоминается термин Получение стали в электрических печах : [c.180]    [c.10]    [c.181]    [c.421]    [c.868]    [c.93]    [c.196]    [c.218]   
Смотреть главы в:

Технология металлов и конструкционные материалы  -> Получение стали в электрических печах

Технология металлов и конструкционные материалы Издание 2  -> Получение стали в электрических печах



ПОИСК



Печи электрические

Печи: индукционные для получения чугунов 550 плавильные для стали сопротивления тигельные 240 электрические для прокаливания флюса



© 2025 Mash-xxl.info Реклама на сайте