Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТУРБУЛЕНТНОСТЬ ПРИРОДНЫХ СРЕД

В монографии дается систематическое изложение современного подхода к инвариантному моделированию развитых турбулентных течений многокомпонентных химически активных газов, применительно к специфике математического моделирования верхних атмосфер планет. Основное внимание уделено проблеме взаимовлияния химической кинетики и турбулентного перемешивания, а также разработке полуэмпирического метода расчета коэффициентов турбулентного обмена в стратифицированных сдвиговых течениях, основанного на использовании эволюционных уравнений переноса для вторых моментов пульсирующих термогидродинамических параметров. Возможности разработанных моделей многокомпонентной турбулентности природных сред продемонстрированы в ряде вычислительных примеров, описывающих процессы кинетики и тепло-массопереноса в верхних атмосферах планет.  [c.2]


ТУРБУЛЕНТНОСТЬ ПРИРОДНЫХ СРЕД 1.1. Турбулентное движение жидкости. Общие положения  [c.10]

Характерным представителем многокомпонентной природной среды служит верхняя атмосфера планеты, отличительной особенностью которой является непосредственное воздействие радиационных факторов при одновременных разнообразных химических превращениях в сочетании с процессами тепло- и массопереноса. Под воздействием интенсивного солнечного электромагнитного излучения происходят разнообразные фотохимические процессы - фотоионизация, фотодиссоциация, возбуждение внутренних степеней свободы (в том числе возбуждение электронных уровней) атомов и молекул. Эти процессы сопровождаются обратными реакциями ассоциации атомов в молекулы, рекомбинации ионов, спонтанного излучения фотонов и ударной дезактивации. Свойства газа формируются в гравитационном и электромагнитном полях при этом важную роль играют процессы молекулярной и турбулентной диффузии и теплопередачи (в том числе и излучением) при различной степени эффективности коэффициентов молекулярного и турбулентного обмена на разных высотных уровнях. Возникающие температурные, концентрационные и барические градиенты приводят к развитию разномасштабных гидродинамических движений, характер которых до основания термосферы сохраняется турбулентным. Определенное воздействие на состав, динамику и энергетику верхней атмосферы оказывает также солнечное корпускулярное излучение и некоторые дополнительные источники энергии (такие как приливные колебания, вязкая диссипация энергии магнитогидродинамических и внутренних гравитационных волн и др.).  [c.68]

Воспользуемся теперь результатами анализа, изложенными в предыдущих параграфах, чтобы промоделировать коэффициенты турбулентной вязкости и теплопроводности применительно к конкретной природной среде. В целях сохранения преемственности с Гл. 6, в качестве примера была взята верхняя атмосфера Земли в интервале высот 90 <7 < 130 км на средних широтах, к которой принадлежит область гомопаузы.  [c.268]

Турбулентность принадлежит к числу очень распространенных и, вместе с тем, наиболее сложных явлений природы, связанных с возникновением и развитием организованных структур (вихрей различного масштаба) при определенных режимах движения жидкости в существенно нелинейной гидродинамической системе. Прямое численное моделирование турбулентных течений сопряжено с большими математическими трудностями, а построение общей теории турбулентности, из-за сложности механизмов взаимодействующих когерентных структур, вряд ли возможно. При потере устойчивости ламинарного течения, определяемой критическим значением числа Рейнольдса, в такой системе возникает трехмерное нестационарное движение, в котором, вследствие растяжения вихрей, создается непрерывное распределение пульсаций скорости в интервале длин волн от минимальных, определяемых вязкими силами, до максимальных, определяемых границами течения. На условия возникновения завихренности и структуру развитой турбулентности оказывают влияние как физические свойства среды, такие как молекулярная вязкость, с которой связана диссипация энергии в турбулентном потоке, так и условия на границе, где наблюдаются тонкие пограничные вихревые слои, неустойчивость которых проявляется в порождении ими вихревых трубок. Турбулизация приводит к быстрому перемешиванию частиц среды и повышению эффективности переноса импульса, тепла и массы, а в многокомпонентных средах - также способствует ускорению протекания химических реакций. По мере накопления знаний о разнообразных природных объектах, в которых турбулентность играет значительную, а во многих случаях определяющую роль, моделирование этого явления и связанных с ним эффектов приобретает все более важное значение.  [c.5]


Турбулентность является характерной особенностью многих природных явлений, в которых происходят динамические процессы, сопровождаемые переносом импульса, энергии и массы и ее эффекты наблюдаются на пространственно временных масштабах от сантиметров до мегапарсеков. Таковы, например, разнообразные динамические процессы в земной атмосфере и гидросфере, в атмосферах и недрах звезд и планет, в межзвездных газопылевых облаках (планетарных туманностях и протопланетных дисках), в галактической и межгалактической среде, в космической плазме (магнитогидродинамическая, или плазменная турбулентность). Преимущественно турбулентными являются метеорологические процессы, включающие в себя взаимодействие океана с атмосферой, испарение с водных поверхностей, вертикальный и горизонтальный перенос тепла, интенсивное перемешивание примесей (в том числе загрязнений), вязкую диссипацию кинетической энергии мелкомасштабных вихрей. Турбулентность возникает во многих технических устройствах при движении жидкости, газа или  [c.10]

Приведенные примеры не исчерпывают результаты исследований по моделированию многокомпонентных турбулентных сред, но, вместе с тем, свидетельствуют об эффективности применения разработанных методов к изучению разнообразных природных объектов, включая возможности их использования в ряде приложений. Обсуждение других направлений исследований потребовало бы, однако, существенного расширения объема книги, что на данном этапе, по известным причинам, оказалось невозможным. Совершенствование теории и модельных подходов открывает перспективы дальнейшего расширения класса моделей, в рамках которых можно ожидать углубленного понимания реагирующей турбулентности и связанных с нею явлений природы.  [c.315]

Переход от ламинарного к турбулентному горению для струи различных газов, распространяющихся в среде неподвижного воздуха, наблюдается при различных числах Ке для воздуха 2200, природного газа 3700—4000 окиси углерода 4700 пропана и ацетилена 8900—10 400. Превышение критических значений Не при таком переходе объясняется влиянием температуры на вязкость и плотность газа. При переходе к рбу-лентному режиму появляется шум, факел нри значительном увеличении скорости отрывается. При образовании смеси за счет турбулентной диффузии скорость горения равна пульсационной скорости и пропорциональна скорости потока.  [c.72]

Содержание книги можно условно разделить на две части, в первой из которых (главы 1-5) подробно излагаются методы математического описания турбулентных течений многокомпонентных реагирующих газовых смесей, а во второй (главы 6-8) представлены конкретные примеры численного моделирования аэрономических задач. Первая глава, имеющая вводный характер, содержит некоторые общие положения теории турбулентности и обсуждение вопросов специфики природных сред, в которых многокомпонентная турбулентность играет важную роль. Во второй главе рассмотрена феноменологическая теория тепло- и массопереноса в ламинарной многокомпонентной среде и методами термодинамики необратимых процессов, с учетом принципа взаимности Онзагера, выведены определяющие соотношения для термодинамических потоков диффузии и тепла в многокомпонентной смеси газов. Третья глава посвящена построению модели турбулентности многокомпонентного химически активного газового континуума. С использованием средневзвешенного осреднения Фавра получены дифференциальные уравнения баланса вещества, количества движения и энергии (опорный басис модели) для описания среднего движения турбулентной многокомпонентной смеси реагирующих газов, а также дан вывод реологических соотношений для турбулентных потоков диффузии, тепла и тензора рейнольдсовых напряжений. В четвертой главе развита усложненная модель турбулентности многокомпонентного континуума с переменной плотностью, опирающаяся (в ка-  [c.7]

Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]


Турбулентность представляет собой широко распространенное и весьма сложное физическое явление, присутствующее в разнообразных природных средах и технических системах. Характерными примерами таких турбулизованных природных сред являются атмосферы планет Солнечной системы, в том числе внешние газовые оболочки этих небесных тел, лежащие в пограничных областях между атмосферой и космосом.  [c.67]

Перейдем к выводу дифференциальных уравнений переноса, описывающих эволюцию одноточечных вторых моментов < А "В > турбулентных пульсаций термогидродинамических параметров химически активной многокомпонентной среды с переменной плотностью и переменными теплофизическими свойствами. Такие уравнения для однородной жидкости в приближении Буссинеска Буссинеск, 1877) лежат в основе метода инвариантного моделирования во многих современных теориях турбулентности различной степени сложности (см. (Турбулентность Принципы и применения, 1980)). Несмотря на полуэмпирический характер уравнений для моментов, в которых при описании корреляционных функций высокого порядка используются приближенные выражения, содержащие эмпирические коэффициенты, следует признать достаточную гибкость основанных на них моделей. Они позволяют учесть воздействие механизмов конвекции, диффузии, а также возникновения, перераспределения и диссипации энергии турбулентного поля, на пространственно-временное распределение усредненных термогидродинамических параметров среды. Поэтому, подобные уравнения нашли широкое применение при численном моделировании таких течений жидкости, для которых существенно влияние предыстории потока на характеристики турбулентности в точке (Турбулентность Принципы и применения, 1980 Иевлев, 1975, 1990). С другой стороны, ими можно воспользоваться для нахождения коэффициентов турбулентного обмена в свободных потоках с поперечным сдвигом (градиентом скорости), в том числе применительно к специфике моделирования природных сред (Маров, Колесниченко, 1987).  [c.168]

Подавляющее большинство гидродинамических процессов и процессов тепло- и массопереноса, определяющих термогидродинамическое состояние природных объектов, таких как атмосферы и недра звезд и планет, происходят на различных пространственно-временных масштабах (от распространения малых примесей в региональном объеме атмосферы планеты до образования гигантских газо-пылевых туманностей, звездных ассоциаций и галактических скоплений) и носят, как правило, турбулентный характер. Турбулентность приобретает ряд особенностей в условиях, когда газ является многокомпонентным, что обычно имеет место в реальных природных средах. Наиболее исчерпывающе такие особенности проявляются при относительно малой плотности газовой смеси, что характерно, в частности, для разреженных газовых оболочек небесных тел -верхних атмосфер планет, состояние которых дополнительно определяется многочисленными комплексами элементарных процессов, инициируемых солнечным ультрафиолетовым и рентгеновским излучением. Теоретическое описание и моделирование турбулентности многокомпонентного химически активного континуума в приложении к планетным атмосферам, определяемое понятием аэро-номика, носит, таким образом, достаточно общий характер и позволяет составить представления об основных принципах и подходах, используемых при описании широкого класса турбулентных природых сред.  [c.312]

Наиболее коррозионноопасными зонами являются участки технологической цепочки с высокой температурой среды (выше 100°С), повышенным содержанием кислых газов, турбулентностью потоков. Отмечена интенсивная коррозия отпарных колонн, трубных пучков теплообменников и кипятильников. В среднем скорость коррозии оборудования на установках очистки природного газа, выполненного из углеродистых сталей, составляет 0,1 —1,0 мм/год.  [c.290]

Турбулентная диффузия. В комплексе проблем, связанных с теоретическим рассмотрением процессов тепло-и массопереноса в природной турбу-лизованной многокомпонентной среде, важное значение имеет моделирование распространения малых примесей в атмосфере (в том числе перемешивание воздушных масс с учетом их химической активности). Наряду с газами, в атмосфере присутствуют также аэрозоли различного типа и размеров, частично участвующие в химических превращениях и фазовых переходах. Сюда же относятся радиоактивные примеси, имеющие как естественное (радон, торон и продукты их распада), так и искусственное (производство и испытания ядерного оружия, выбросы при авариях на атомных электростанциях и других объектах) происхождение. В процессе переноса указанных примесей в атмосфере и их перемешивании определяющую роль играет турбулентная диффузия, характер которой зависит от структуры пульсационного поля скоростей и распределения энергии турбулентности между пульсациями различных пространственных масштабов. При описании процессов диффузии в турбулентной атмосфере можно выделить средние значения концентраций примеси Zпульсационные отклонения 2 от  [c.18]


Смотреть страницы где упоминается термин ТУРБУЛЕНТНОСТЬ ПРИРОДНЫХ СРЕД : [c.23]    [c.114]    [c.260]    [c.225]    [c.327]    [c.318]   
Смотреть главы в:

Турбулентность многокомпонентных сред  -> ТУРБУЛЕНТНОСТЬ ПРИРОДНЫХ СРЕД



ПОИСК



Газ природный



© 2025 Mash-xxl.info Реклама на сайте