Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовое топливо и его характеристика

ГАЗОВОЕ ТОПЛИВО И ЕГО ХАРАКТЕРИСТИКА  [c.5]

Осуществленная система измерения расходов, температур и газового анализа позволила достаточно полно проследить процесс в его динамике и взаимосвязи, т. е. получить исчерпывающие данные о выгорании топлива и испарении воды и благодаря этому получить количественные характеристики этого сложного процесса.  [c.176]

Скорость горения топлива и определяется его физико-химическими характеристиками, давлением в ракетной камере рк. скоростью газового потока, омывающего поверхность горения, начальной температурой заряда Т , а также перегрузками, действующими на заряд во время горения.  [c.116]


Представленная математическая модель рассматривается как оболочка, которая включает описание основных процессов тепло- и массообмена и химической кинетики в цилиндре двигателя, использующего газовое топливо при различных способах его воспламенения. Математическая модель позволяет определять характеристики рабочего процесса с учетом большого числа регулировочных параметров, охватывающих форму камеры сгорания, закон подачи топлива, параметры рабочей смеси, применение наддува и охлаждения наддувочного воздуха и др.  [c.20]

Для выполнения дипломного проекта по указанной теме должны быть выданы следующие исходные данные состав газа, который будет получать котельная, или его месторождение, вид и состав резервного топлива, чертежи компоновки оборудования существующей котельной, технические характеристики всего установленного вспомогательного оборудования, чертежи газового и воздушного тракта котельной, установочный чертеж котлоагрегата и водяного экономайзера.  [c.132]

Один из разделов отчета должен быть посвящен описанию проведенных опытов. При описании опытов дается оценка каждого опыта с указанием его продолжительности, колебаний основных параметров, результатов визуальных наблюдений. Давая характеристику опытов, следует указать, как изменялся состав топлива в продолжение всех испытаний, как производился выбор оптимального коэффициента избытка воздуха, как работал эксплуатационный персонал в период испытаний. Основным в отчете является раздел, в котором приводится анализ результатов испытаний. Прежде всего приводится анализ работы топочного устройства, описываются дефекты, выявленные при испытании топочных механизмов, газовых горелок или мазутных форсунок дается критическая оценка надежности и  [c.250]

Внешняя скоростная характеристика двигателя — графическая зависимость основных показателей его работы (мош,ности, крутящего момента, часового и удельного расходов топлива) от частоты вращения коленчатого вала при полной подаче топлива насосом дизеля или полном открытии дроссельной заслонки карбюратора (карбюратора-смесителя в газовом двигателе).  [c.19]

Условия подготовки топлива на цепной решетке, его воспламенения и горения, а также выгорание шлаков в очень большой мере зависят от основных характеристик топлива. Кроме того, от рода сжигаемого топлива зависят свойства газовой среды, заполняющей топочную камеру, что сильно влияет на теплообмен горящего слоя топлива с поверхностями нагрева, расположенными в топочной камере.  [c.122]


Общая характеристика разделительных устройств. Система подачи компонентов топлива предназначена для подвода свободных от газовой фазы жидких компонентов топлива из баков к двигателю при его работе. Для ДУ ИСЗ, КА и КК, которые могут работать в условиях отрицательных или близких к нулю ускорений, система подачи должна  [c.339]

Д. а., и часто по типу по-следней классифицируются как легкие дизе- чи, так и карбюраторные и газовые двигатели. В табл. 8 приведены формы камер сгорания карбюраторных и газовых двигателей и их характеристика. У карбюраторных и газо-В1.1Х двигателей клапаны располагаются как в головке (подвесные), так и в самом блоке цилиндров, в случае смещенной камеры сгорания — Г-образной головке (фиг. 4 и 5). Конструкция головки цилиндров в автотракторных (быстроходных бескомпрессор-ных) дизелях тесно связана с принятым принципом смесеобразования и включает в себя все элементы, определяющие его. Главные требования к ней сводятся к обеспечению проникновения распыленного топлива через слой воздуха и равномерного перемешивания с ним. Распыли-вание топлива в автотракторных дизелях разделяется на 1) лучевое (струйное или непосредственное в камере сжатия) — форсункой под высоким (до 300 а1) давлением применяется в автомобильных дизелях как обеспечива-  [c.124]

Многие физико-химические свойства и теплотехнические характеристики газового топлива и продуктов его сгорания можно установить по так называемому углеродному числу п. Сущность этого метода заключается в том, что реальная смесь углеводородов метанового ряда СпН2 +2 заменяется одним условным углеводородом, свойства которого отождествляются со свойствами смеси. Число п показывает количество атомов углерода в этом условном углеводороде (для чистого метана п = 1). Оно может быть дробным и в общем случае больше единицы. Достоинства этого метода заключаются в том, что для расчетов состава газа не требуется полный анализ его органической части. Для этого необходимо знать только количество углеводородов метанового ряда (в процентах по объему). Число п находят по формуле  [c.327]

Заключение. Создана математическая модель новой схемы сверхзвукового пульсирующего детонационного прямоточного двигателя -СПДПД . Пульсирующий нестационарный процесс в нем инициируется периодическими изменениями режима подачи топлива, а специальный источник зажигания нужен лишь для запуска. Нестационарное течение в цилиндрической детонационной камере и в сопле рассчитывается интегрированием уравнений одномерной нестационарной газовой динамики с помощью монотонной разностной схемы второго порядка аппроксимации с выделяемыми явно детонационными волнами и главными контактными разрывами. Для сравнения характеристик СПДПД и его стационарных альтернатив с до- и сверхзвуковым го-  [c.111]

Для решения задач регулирования важное значение имеют динамические и статические характеристики ЖРД. Статические характеристики определяют связи его основных параметров с внешними и внутренними управляющими и возмущающими воздействиями, определяемыми положением органов управления (например, углами поворота дросселей), изменением давления компонентов топлива на входах в насосы, температуры, плотности и фазового состава (наличия газовой фазы) компонентов, отклонением характеристик агрегатов (КПД и напорных характеристик насосов, КПД и расходных характеристик турбин, сопротивлений элементов гидравлического тракта и т. д.) от среднестатических. Далее рассмотрены только динамические характеристики агрегатов и ЖРД в целом. Вопрос о статических характеристиках точности регулирования изложен достаточно подробно в ряде работ [27, 34].  [c.5]

Работу ракетного двигателя можно представить в виде последовательности квазиравновесных процессов, таких как нагревание топлива, его горение, расширение продуктов сгорания до давления истечения из сопла. Особенность их состоит в зависимости химического состава продуктов сгорания от условий проведения процесса. Термодинамика позволяет рассчитать равновесный молекулярный состав газов на каждом из этапов работы двигателя, если известны необходимые свойства исходных веществ и продуктов сгорания. В итоге удается отделить термодинамические задачи от газодинамических и оценить удельную тягу двигателя при заданном топливе или, не прибегая к прямому эксперименту, подобрать горючее и окислитель, обеспечивающие необходимые характеристики двигателя. Другой пример — расчет электропроводности низкотемпературной газовой плазмы, являющейся рабочим телом в устройствах для магнитно-гидродинамического преобразования теплоты в работу. Электропроводность относится к числу важнейших характеристик плазмы она пропорциональна концентрации заряженных частиц, в основном электронов, и их подвижности. Концентрация частиц может сложным образом зависеть от ис- ходного элементного состава газа, температуры, давления и свойств компонентов, но для равновесной плазмы она строго рассчитывается методами термодинамики. Что касается подвижности частиц, то для ее нахождения надо использовать другие, нетермодипамические методы. Сочетание обоих подходов позволяет теоретически определить, какие легкоионизирующиеся вещества и в каких количествах следует добавить в плазму, чтобы обеспечить ее требуемую электропроводность.  [c.167]


Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов.  [c.77]

В дизелях типа Д70 заложены значительные резервы по повышению их мощности и экономичностн без увеличения габаритов и массы за счет снижения коэффициента избытка воздуха и за счет повышения наддува. Только путем использования резервов рабочего процесса по а на дизелях типа Д70 мощностью в 3000 л. с. может быть повышена мощность до 3500 л. с. в агрегате. Характеристики дизеля, полученные при испытаниях на выявление резервов рабочего процесса за счет а, показаны на рис. 1. Повышая цикловую подачу топлива, можно удельный эффективный расход топлива снизить до Се= 143,5 г/(э. л. с.-ч), при. этом коэффициент избытка воздуха снижается до а=1,86. Другие параметры форсированного по рабочему процессу дизеля приведены на рис. 2. Изменение температуры основных деталей при форсировании его до 3500 л. с. видны на рис. 3. Из приведенных зависимостей следует, что, кроме повышения экономичности, мощность газовой турбины увеличивается примерно на 120 л. с. при почти неизменной мощности, потребляемой компрессором. Максимальное давление сгорания возрастает незначительно на 3—4 кгс/см . Резервы по а в рабочем процессе в дизелях типа Д70 оставлены в модификациях Д70 неиспользованными, а дальнейшая форсировка проведена по увеличению наддува и по улучшению конструктивных и технологических параметров.  [c.9]

Применяемая же в настоящее время топливная аппаратура газовых двигателей предусматривает количественное регулирование мощности, т. е. обеспечивает в широком диапазоне нагрузок постоянное топливо-воздушное соотношение. Этот эффект создается за счет введения калиброванного сопла, на котором образуется перепад давлений топливного газа, управляемый раз-режениСхМ за дросселем, В аппаратуре, работающей по этому принципу, изменение состава газа приводит к заметному изменению регулировок. Увеличение плотности газа приведет к пе-реобогащению смеси, так как в этом случае увеличится значение /о, а объемное соотношение топливо — воздух сохранится неизменным. С другой стороны возрастет подаваемое в двигатель количество теплоты сгорания, что потребует прикрытия дросселя и приведет к ухудшению условий сгорания. В конечном итоге оба фактора отрицательно скажутся на экономичности двигателя. Следовательно при изменении состава топливного газа аппаратура, количественно регулирующая мощность двигателя, должна заново настраиваться. В практике газовой промышленности нашел широкое применение комбинированный качественно-количественный способ регулирования мощности газовых двигателей. Этот способ оказался особенно эффективным в сочетании с форкамерно-факельным зажиганием. Его сущность состоит в том, что для изменения мощности двигателя меняют количество топливного газа, сохраняя неизменной подачу воздуха. Природный газ допускает такое регулирование мощности в отношении 1 0,6 при обычном искровом зажигании и I 0,4 при форкамерно-факельном зажигании. Дальнейшее уменьшение мощности требует уже количественного регулирования. Регулятор подачи газа при качественно-количественном принципе регулирования должен обеспечивать минимальную для каждого положения дросселя подачу топливного газа, при которой имеет место устойчивая работа двигателя. При этом момент возникновения неустойчивости должен определяться каким-либо специальным датчиком. Такой алгоритм управления топливной аппаратурой независимо от состава газа будет обеспечивать на каждом режиме наиболее экономичную работу. Для достижения максимальной мощности при полностью открытом дросселе должен включаться экономайзер, имеющий плавную характеристику регулирования, т. е. подача газа должна увеличиваться пропорционально усилению на педали акселератора. В этом случае смесь будет обогащаться до уровня, достаточного для получения необходимой мощности. Если при этом плотность топливного газа оказалась настолько высокой, что возникло переобогащение смеси, то мощность, развиваемая двигателем, снизится, что послужит сигналом для водителя об уменьшении усилия нажатия на педаль акселератора. Эффекты подобного рода, когда для увеличения интенсивности разгона  [c.112]


Самым надежным методом диагностики состояния моторного масла или двигателя и определения необходимости для замены моторного масла при определенных условиях эксплуатации двигателя является систематический осмотр и проверка масла на протяжении всего периода использования. Изменение трибологических характеристик выражается через изменение физических и химических свойств вследствие существующих соответствующих корреляций между физическими, химическими и трибологическими свойствами [1]. Зная эти корреляции, на основании прослеживания изменений физических и химических свойств масла (вязкость, индекс вязкости, точка воспламенения, точка ожиживания, содержание серной золы, нерастворимые в н.пентане и бензоле вещества, механические отходы, вода и содержание топлива, цвет, запах, плотность, ИК-спектр, содержание некоторых металлов и пр.) можно получить надежные данные по состоянию масла и возможности его дальнейшего использования. Для проведения такого контроля состояния масла имеются обычные стандартные лабораторные методы и аналитическая техника (газовая хроматография, абсорбционная и эмиссионная спектроскопия, ИК-спектроскопия, УФ-спектроскопия и масс-спектроскопия, ядерный магнитный резонанс и пр.). Кроме того, определены критерии замены моторного масла [1-6], т.е. предельные значения отдельных физических и химических свойств смазочного масла, при которых масло может считаться пригодным. Масло заменяется, когда по меньшей мере одно из вышеупомянутых свойств больше не отвечает требованиям, хотя другие свойства масла еще остаются удовлетворительными.  [c.164]


Смотреть страницы где упоминается термин Газовое топливо и его характеристика : [c.88]    [c.262]    [c.34]    [c.95]    [c.7]    [c.156]   
Смотреть главы в:

Слесарь-газовик Издание 2  -> Газовое топливо и его характеристика



ПОИСК



Газовые отопительно-варочные печи Г лава I, Сведения о работе отопительно-варочных печей на газовом топливе и их техническая характеристика

Основные принципы переустройства котельных агрегатов для сжигания газового топлива . Краткая характеристика газогорелочных устройств

Основные характеристики топлив, применяемых в нефтяной, нефтехимической и газовой промышленности

Предупреждение аварий и несчастных случаев при обслуживании котельных на газовом топливе Характеристика взрывоопасных газовоздушных смесей

Проектирование газоснабжения котельных установок Характеристика котельных установок и котлоагрегатов, работающих на газовом топливе

Топливо Характеристика топлива

Топливо газовое

Характеристика газовые

Характеристики топлива



© 2025 Mash-xxl.info Реклама на сайте