Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы акустических волн

Некоторые положения технологии контроля. Прежде чем приступить к контролю качества, необходимо в зависимости от объекта контроля и состояния его поверхности произвести выбор метода контроля, типа акустической волны, контактирующей среды, способа ввода УЗК, установить параметры контроля и произвести настройку аппаратуры.  [c.181]

ТИПЫ АКУСТИЧЕСКИХ ВОЛН  [c.4]

Глава 2. ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ 2.1. Типы акустических волн  [c.20]


В случае цилиндрической симметрии движения может быть три типа акустических волн продольные (сжатия и разрежения) и два типа поперечных — осев ые и параллельно оси цилиндра) и азимутальные (и нормально оси). В каждом случае волны могут быть ударными. Как обычно, нас интересуют поведение таких сходящихся волн при их фокусировке и описывающее их автомодельное решение.  [c.333]

Нелинейные свойства твердых тел, описываемые ангармоническими членами в уравнениях теории упругости, известны достаточно давно. Ниже мы убедимся, что теория нелинейных взаимодействий акустических волн может быть развита точно так же, как это было сделано ранее для электромагнитных волн. Вместе с тем следует отметить, что, поскольку для заданного направления распространения возможны три типа акустических волн, а соотношения между деформацией и напряжением уже для линейного случая описываются тензором четвертого ранга, теория нелинейных взаимодействий акустических волн оказывается более сложной, нежели соответствующая теория для электромагнитных волн.  [c.147]

Типы акустических волн  [c.14]

Отсюда следует, что колебания соседних атомов в цепочке происходят В фазе (вместе с их центром масс) и имеют одинаковую амплитуду, т. е. ячейки смещаются как одно целое. Такой тип колебаний характерен для акустической волны (рис. 5.10). На рис. 5.10 и. на следующих для наглядности приведены как продольные, так и поперечные колебания атомов одномерной цепочки.  [c.156]

Кроме упругости по объему, в твердом теле существует упругость по форме, поэтому в теле могут распространяться волны двух типов продольные и поперечные. Акустические волны в твердых телах характеризуются  [c.189]

ВЫВОД формул для излучения и приема акустических волн, а также определение эквивалентного электрического импеданса преобразователя. Представить преобразователь в виде пассивного электрического элемента важно для оптимизации согласования его с генератором и усилителем импульсного прибора, а также для определения экстремальных режимов работы приборов резонансного типа, поскольку именно при этих режимах измеряют резонансные частоты.  [c.63]

Звуковые волны, распространяющиеся в открытом пространстве, образуют свободное звуковое поле. В помещениях обычного типа звуковые волны, отражаясь от ограждений, образуют отраженное звуковое поле, которое совместно со свободным звуковым полем создает акустический режим помещения.  [c.233]

В целом скорости акустических волн, определенные из данного типа оптических интерференционных картин, находятся в хорошем согласии с величинами, полученными с помощью более широко используемой техники ультразвуковых эхо-импульсов, которая будет обсуждаться ниже.  [c.453]


Применяя свет нескольких длин волн, можно записать цветную голограмму. Разумеется, сама голограмма не является цветной, но при освещении ее светом со многими длинами волн, мы получаем цветное изображение ( 5.3). Другие названия голограмм, связанные с длиной волны, относятся к области спектра или типу применяемой волны например, микроволновая голограмма, акустическая голограмма и рентгеновская голограмма.  [c.149]

Три основные характеристики дифрагированного на звуке пучка света амплитуда, направление и частота — используются соответственно в трех основных типах акустооптических устройств модуляторах, дефлекторах и устройствах сдвига частоты. В ряде устройств дополнительно используются возможности, создаваемые учетом поляризации световой и акустической волн.  [c.226]

Наибольший интерес представляют фазы коэффициентов отражения и трансформации волн 4-го типа, в число которых входит волна Eqq, соответствующая (см. 7) поршневой акустической волне. Эти фазы изображены на рис. 16.  [c.47]

Для каждого типа линейного рассеяния света существует нелинейный аналог. Если в линейном пределе оптические свойства среды модулируются тепловыми акустическими волнами или оптическими колебаниями кристаллической решетки, то в нелинейном сам лазерный пучок вначале вызывает усиление этих колебаний и волн, на которых  [c.57]

Осцилляции скачка уплотнения при применении отражающего диска наблюдаются, как правило, в ультразвуковом диапазоне частот и, судя по полученным осциллограммам, весьма близки к гармоническим. С другой стороны, на низких звуковых и инфразвуковых частотах Гартман получил пилообразные изменения давления, подтверждающие релаксационный характер процесса. По-видимому, в этих двух граничных случаях возбуждения акустических волн (с одной стороны, использование резонатора большой емкости, а с другой — полное его отсутствие) мы имеем дело с двумя различными типами генерации. О возможности подобного явления в автоколебательных системах при переходе от низких частот к высоким указал А. А. Харкевич [29].  [c.20]

Из рис. 1, а следует также, что трещина, пришедшая в движение при а = а , не будет распространяться неограниченно — она остановится. Характер роста трещины также зависит от ее начального радиуса i o Трещины, начальный радиус которых лежит в диапазоне Ri < Rq < R2, при достижении внешним напряжением значения скачком переходят из одного устойчивого состояния в другое. При этом рост трещин происходит за счет энергии упругой деформации, накопленной в материале, причем часть упругой энергии рассеивается, в частности излучается в виде акустических волн. После скачка трещины этой группы будут плавно подрастать по мере дальнейшего снижения внешней нагрузки. Найдем выражение для нового радиуса трещины R после скачка. Будем считать, что в процессе роста трещины поведение газа подчиняется изотермическому закону (процесс типа дросселирования), т.е.  [c.104]

Типы упругих волн. Измерение модулей упругости твёрдых тел акустическими методами  [c.357]

Кроме упругости по объему, в твердом теле существует упругость по форме, поэтому в объеме тела могут распространяться волны двух типов продольные и поперечные. Акустические волны в твердых телах характеризуются либо смещением, либо колебательными скоростями, либо тензорами деформации или напряжения.  [c.198]

Рассеяние света на тепловых акустических колебаниях [1, 3, 4] в принципе ничем не отличается от рассеяния на когерентных звуковых волнах. Однако его математическое описание несколько более сложно, так как тепловые возбуждения обладают широким спектром частот и волновых векторов, в результате чего рассеяние происходит во всех направлениях. Так же, как и в случае когерентных световых волн, при рассеянии на тепловых колебаниях наблюдается смещение частот дифрагированного света. Это смещение впервые было предсказано Мандельштамом и Бриллюэном именно для рассеяния на звуковых волнах теплового происхождения, что и послужило причиной называть его мандельштам-брил-люэновским рассеянием (МБР), в отлщие от рассеяния на неподвижных неоднородностях — рэлеевского рассеяния, происходящего без сдвига частоты [1]. В экспериментах с жидкостями обычно наблюдаются две смещенные линии мандельштам-бриллюэновского рйссеяния стоксова линия, имеющая более низкую частоту по сравнению с частотой падающего света (см. также 2), и антистоксова линия, характеризующаяся более высокой частотой. Для твердых кристаллических тел как правило наблюдаются три стоксовы и три антистоксовы компоненты в соответствии с тремя типами акустических волн в кристалле — одной квазипродольной и двумя квазипоперечными. При наличии свободной поверхности в результате рассеяния на тепловых поверхностных волнах в спектре рассеянного света могут появиться и дополнительные линии.  [c.346]


Для целей контроля применяют колебания частотой от 50 Гц до 50 МГц. Интенсивность колебаний при этом обычно невелика, не более 1 Вт/см . Как будет показано в 1.1, существуют разные типы акустических волн, отличающиеся скоростью распространения, направлением колебания частиц и другими признаками. Их называют модами (от лат. modus — образец, способ).  [c.6]

В рассматриваемых испытаниях распространение акустических волн исследовали как в пустой плети, так и в плети, заполненной водой. В системе АС-6А/М были установлены частотные фильтры на диапазон 10-200 кГц. Генерацию волн напряжения осуществляли с помощью сломов грифеля твердостью 2Н и диаметром 0,5 мм, вставленного в карандаш со специальной насадкой (источник Су-Нилсена). Сломы производили на разных расстояниях от приемников. Импульс акустической эмиссии фиксировал блок регистратора типа РАС-3 А. Согласно теоретическим представлениям, в данной конструкции должны существовать симметричная 502 и асимметричная АО моды, распространяющиеся со скоростями 5,4 и 3,3 мм/мкс соответственно.  [c.198]

Гидродинамические и аэродинамические источники вибраций и шумов имеются во всех машинах, где есть потоки жидкости или газа. Основная причина появления звука — неоднородность потока, вызванная периодическим его прерыванием (сирены, компрессоры, вентиляторы), турбулентностью, кавитацией, вихрями и т. д. Неодиородпость образует градиенты скоростей частиц жидкости (газа), вследствие чего возникают местные изменения плотности и давления, которые распространяются в виде акустических волн, излучаясь в воздух и проникая в упругие конструкции. С источниками такого типа можно ознакомиться в работах [30, 31, 81, 270, 324, 331, 337, 381].  [c.11]

Поверхностные акустические волны в кристаллах. На свободной поверхности кристаллов распространяются поверхностные волны, являющиеся аналогами Рэлея волн в изотропном твёрдом теле. Волны рэлеев-ского типа в кристаллах образуются затухающими и глубь кристалла неоднородными волнами. Частицы среды в такой волне движутся по эллипсам, плоскость к-рых наклонена к поверхности кристалла под углом, зависящим от ориентации среза и направления распространения поверхностной волны в плоскости среза. Упругая анизотропия сказывается на характере распространения поверхностных волн точно так же, как и объём1Шх возникает зависимость фазовой скорости от направления распространения и ориентации среза  [c.509]

В ограниченных твёрдых телах кроме цродольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностное акустические волны, скорость к-рых меньше скорости об нных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны, скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з, для продольной волны в стержне с , , иоперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде С[ (табл. 3)  [c.548]

ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ (ЭМЛП) — превращение части энергии эл.-магн. волн на границе проводника в энергию упругих колебаний той же или кратных частот, меньших дебаевской частоты (см. Дебая теория). Характеристиками ЭМЛП служат амплитуда возбуждаемого ультразвука и и эффективность преобразования Т1, определяемая отношением потоков энергий в упругой и эл.-магн. волнах. Обычно г iO -lO" , причём наиб, интенсивная генерация ультразвука происходит в присутствии пост. магн. поля Но. В случае генерации продольного ультразвука вектор Но направляют вдоль границы проводника (рис. 1, а), а в случае генерации поперечного ультразвука (см. Упругие во.ты) — по нормали к ней (рис. 1, б). Эл.-магн. поле создаётся катушками индуктивности, расположенными вблизи поверхности (при работе на высоких частотах образец помещают в объёмный резонатор). Преобразователем эл.-магн. и упругой энергий в задачах ЭМЛП выступает собственно приповерхностный слой проводника. Формируя разл. конфигурации и эл.-магн. полей у поверхности проводника (рис. 2), можно возбуждать в нём не только объёмные упругие волны, распространяющиеся иод любым углом к поверхности, но и разл. типы поверхностных акустических волн.  [c.538]

Механизмы воздействия акустических волн на нелинейное развитие трехмерных возмущений в затопленных струях исследованы в [2.24]. Авторами обнаружена жесткая неустойчивость струйных течений и слоев смешения по отношению к трехмерным конечно-амплитудным возмущениям типа раностного резонанса. Объяснен ряд явлений, связанных с аэроакустическим стабилизирующим и дестабилизирующим воздействием акустических волн на устойчивость и дальнобойность струй. Теоретический анализ проведен на базе трехмерных нестационарных уравнений Навье-Стокса без каких-либо дополнительных предположений при расчете как ламинарного, так и турбулентного течений.  [c.82]

Использование резонансных акустических приемников (скажем, пьезоэлектрических пластинок) позволяет, вообще говоря, определить только парциальный коэффициент поглощения. Единой методики для измерения поглощения в жидкостях и газах, естественно, нет. В качестве широкополосных приемников в технике измерения интенсивных ультразвуковых волн в жидкостях применяются при-ем1ники типа акустического абсолютно черного тела .  [c.168]

Первая задача — это определение шума турбулентного пограничного слоя в волновой зоне, вдали от самих источников шума. В этом случае можно считать, что генерация шума происходит за счет нестационарного турбулентного потока в пограничном слое. Для нахождения интенсивности этого шума следует воспользоваться основным уравнением (11.1) теории аэродинамической генерации звука при наличии твердых тел в потоке. При этом конкретные условия постановки этой задачи значительно различаются в зависимости от того, как ведет себя поверхность тела под действием приложенных со стороны жидкости сил, имеющих случайный характер. Эта поверхность может быть акустически жесткой и, таким образом, не будет совершать колебания под действием этих сил поверхность может быть акустически мягкой, и тогда пульсации давления в турбулентном пограничном слое будут переизлучать-ся ею в виде истинного звука наконец, поверхность может быть упругой и в ней (например в оболочке) будут распространяться под действием сторонних сил различные типы упругих волн (см. 1 этой главы).  [c.444]


Наиболее просто можно исследовать длинные волны малой амплитуды в жидкости постоянной глубины с вертикальными рассеивающими границами. Двумя основными типами препятствий, рассеивающих волны на поверхности воды, являются острова, полностью окруженные жидкостью, и заливы—вырезы в прямой (или заданной иным образом) бесконечной линии берега. Чтобы задачу можно было решить методом разделения переменных, контуры рассеивающего пре-пятствйя часто предполагаются круглыми, прямоугольными или какой-либо другой простой формы это обычно грубое приближение к действительности, и в примерах, которые точнее отражают реальную ситуацию, рассматриваются конфигурации, не допускающие разделения переменных. Указанные задачи рассеяния аналогичны двумерному акустическому рассеянию в однородной жидкости рассеяние на острове соответствует рассеянию плоской акустической волны цилиндрическим препятствием, а заливы соответствуют акустическим полостям, например резонаторам Гельмгольца. Следующим шагом, приближающим к моделированию реальной задачи, явился бы учет эффектов преломления, вызванных изменением глубины (что в свою очередь приводит к изменению скорости волны) в окрестности рассеивающего препятствия. В случае распространения длинных (по сравнению с глуби-  [c.20]

При этом распределение плотности остается близким к экспоненциальному, а амплитуда скорости на разрыве стремится к константе. Конечно, здесь существует много невыясненных вопросов. Во-первых, требует уточнения модель тешюпереноса в хромосфере. Во-вторых, акустические волны — лишь частный тип возмущений, излучаемых снизу в хромосферу. Кроме них следовало бы рассмотреть магнитозвуковые волны, альфвенов-ские, внутренние гравитационные. Анализ нелинейных искажений магнитного звука в экспоненциальной атмосфере был проведен в работе [Островский, Рубаха, 1972], где показано, что в сильном магнитном поле Н (когда в медленных магнитозвуковых волтах образование разрывов Происходит еще быстрее, чем в немагнитном звуке. В быстрых же магнитозвуковых волнах, бегущих вверх, разрыва может и не возникнуть вообше ввиду неограниченного ускорения волны (ее скорость стремится к бесконечности при р ->0, и время ее распространения вверх в этой модели остается конечным при х-> >). В альфвеновских волнах, как известно, разрывы не возникают вообще. Эти два последних типа волн, по-видимому, могут, слабо затухая, пройти в корону Солнца и в принципе принять участие в ее нагреве рост температуры в короне гораздо сильнее, чем в хромосфере. Однако адекватной модели, описывающей волновой нагрев кОроны, построить пока не удалось.  [c.91]

Эта специфика прежде всего выражается в реальной и широко используемой возможности генерирования плоских или квазипло-ских волн, в особом значении импульсного режима излучения, в воздействии мощного ультразвука на среду и ее реакции на это воздействие, в сильном поглощении ультразвуковых волн в газах и возможности распространения сдвиговых волн в жидкостях, в отчетливом проявлении нелинейных акустических эффектов в жидкостях и твердых телах, постоянных сил в ультразвуковом поле и т. д. Соответственно на первое место в ультраакустике выходят вопросы распространения плоских волн, их поглощения, отражения, преломления, прохождения через слои, фокусирования, рассеяния, анализ нелинейных эффектов, пондеромоторных сил в поле плоских волн, дифракционных и интерференционных эффектов в поле реальных излучателей ультразвуковых пучков вместе с анализом отклонений характеристик ультразвукового поля в ограниченных пучках по сравнению с полем идеальных плоских волн, распространения различных типов ультразвуковых волн в безграничных и ограниченных твердых телах, в том числе — в кристаллах и пр. В насго-яи ей книге сделана попытка дать всем этим вопросам достаточно полное освещение в сочетании с другими аспектами распространения ультразвуковых волн. В книге приводятся также э сперимеп-тальные данные по скорости и поглощению ультразвука в л<идко-стях и газах, а также по скорости звука в изотропных твердых телах и кристаллах. Наряду с классическим материалом в ней использованы данные из оригинальных источников, на которые сделаны соответствующие ссылки.  [c.5]

Кроме упругости объема, в твердом теле существует упругость формы поэтому в нем могут распространяться волны двух типов продольные и поперечные. Акустические волны в твердых телах характеризуются либо смещением либо колебательными скоростями, либо тензорами деформации илп напряже ния [20]. Упругое смещение в твердом теле складывается из упругих смещени продольных и поперечных волн  [c.162]


Смотреть страницы где упоминается термин Типы акустических волн : [c.434]    [c.509]    [c.274]    [c.163]    [c.116]    [c.246]    [c.374]    [c.251]    [c.4]    [c.257]    [c.168]    [c.137]    [c.452]   
Смотреть главы в:

Ультразвуковой контроль сваных соединений Издание 2  -> Типы акустических волн

Акустические методы контроля Книга 2  -> Типы акустических волн

Теория и практика ультразвукового контроля  -> Типы акустических волн



ПОИСК



Волна акустическая

Волны-Типы

Волнь акустические

Типы упругих волн. Измерение модулей упругости твёрдых тел акустическими методами



© 2025 Mash-xxl.info Реклама на сайте