Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о потоке. Виды движения

ПОНЯТИЕ О ПОТОКЕ. ВИДЫ ДВИЖЕНИЯ  [c.71]

Замена ручного труда машинами требует решения задачи комплексной механизации и автоматизации производства. Очевидно, что выбор средств механизации и автоматизации технологических процессов зависит от объема производства и его серийности. Распространение механизации и автоматизации на серийное и мелкосерийное производство, характеризующееся переналадками и изменяющимися режимами, делает понятие поточного производства более сложным. Многообразие и сложность видов движения в процессе производства приходит на смену прежнему упрощенному представлению о потоке как о непрерывном движении с постоянными темпом и направлением. Эти изменения накладывают отпечаток и на погрузочно-разгрузочные работы, где, в связи с ростом производительности труда и постоянно расширяющимся объемом производства значительно возрастают объемы работ, связанные с большой номенклатурой грузов, отличающейся как по типу, так и по виду. Для создания современного гибкого технологического процесса требуется создание универсальных транспортных и перегрузочных устройств, способных обеспечить высокую степень механизации и автоматизации даже при разнородной серийной продукции. Этим требованиям в наибольшей степени отвечают промышленные манипуляторы, управляемые человеком, и промышленные роботы — манипуляторы с автоматическим управлением, обладающие в достаточной степени универсальностью и автономностью и способные выполнять разнообразные рабочие операции. Действительно, даже при работе с однотипными грузами рабочая операция меняется от цикла к циклу, что вызвано изменением координат начальной и конечной гочек траектории, т. е. рабочая операция не вполне ясна заранее, а варьируется в широких пределах, поэтому изготовление специализированных механизмов оказывается экономически неоправданным.  [c.5]


Понятие скорости звука имеет громадное значение в аэродинамике и газодинамике. Обтекание тел газом, истечение i азов через сопла и насадки и вообще характер любою вида движения газов находится в самой тесной связи с отношением скорости потока к скорости звука в газе. В зависимости от величины этого отношения принято говорить о дозвуковом и сверхзвуковом режимах течения и скорости полета. Отношение скорости потока к скорости звука принято обозначать буквой М и называть числом Маха  [c.166]

Уравнения двумерного пограничного слоя являются уравнениями параболического типа. Общие свойства уравнений двумерного пограничного слоя сохраняются и для пространственного пограничного слоя. Это означает, что главный механизм, определяющий характер течения в направлении, перпендикулярном к стенке, является механизмом диффузии момента количества движения и диффузии потока тепла в сжимаемых средах. Произвольное возмущение мгновенно передается поперек пограничного слоя, так как в этом направлении скорость диффузии бесконечно велика. Произвольное возмущение в пограничном слое распространяется вдоль линий тока с конечной скоростью. В трехмерном пограничном слое возникает понятие о зоне зависимости и о зоне влияния [14]. Возмущение, возникающее в некоторой точке пограничного слоя, распространяется не на всю его область, а только на пространство влияния этой точки. Область зависимости и область влияния определяются в виде клина, образованного двумя поверхностями, перпендикулярными к поверхности, проходящей через предельную линию тока на теле и линию тока внешнего течения. Угол между двумя поверхностями задает максимальный угол разворота вектора скорости в плоскости, касательной к поверхности тела. Когда угол между двумя поверхностями стремится к нулю, предельные линии тока имеют то же направление, что и линии тока внешнего течения, и области зависимости и влияния вырождаются в одну поверхность, перпендикулярную к поверхности тела. Если начальные условия заданы на некоторой поверхности, перпендикулярной к поверхности тела, т. е. известны составляющие скорости (в несжимаемой жидкости) и температура или энтальпия (в сжимаемом газе), тогда решения уравнений пространственного пограничного слоя можно найти только в некоторой области, определяемой областью, которая зависит от начальных данных на поверхности. Правильную картину течения в пограничном слое, особенно вблизи отрыва , можно построить только с учетом перетекания жидкости, т. е. зон зависимости и зон влияния.  [c.135]


Введение понятия осредненной скорости имело существенное значение для изучения механизма турбулентного режима. Как показывает обработка графиков пульсации, несмотря на кажущуюся беспорядочность изменения скорости, величина осредненной скорости за достаточно большое время остается постоянной. Поэтому в турбулентном потоке вместо поля мгновенных скоростей можно рассматривать поле осредненных скоростей, и в дальнейшем, говоря о скоростях элементарных струек в турбулентном потоке, мы всегда будем иметь в виду именно эти осредненные по времени скорости. Поступая подобным образом, можно также рассматривать турбулентное движение как движение установившееся, хотя, строго говоря, оно является неустановившимся, поскольку линии тока в каждый данный момент времени изменяют свою форму.  [c.128]

Уравнения движения турбулентного потока. Турбулентный поток по своей природе есть поток неустановившийся (нестационарный). Изучение такого потока связано со значительными трудностями, поскольку случайный характер изменения во времени и пространстве его кинематических и динамических параметров не позволяет описать турбулентное течение, пользуясь только традиционными методами математического анализа, применяемыми в классической гидромеханике. Механические системы с такими параметрами (в частности, турбулентный поток) изучаются статистической механикой. Впервые элементарные статистические понятия при рассмотрении турбулентного потока ввел Рейнольдс. Он представил меняющееся во времени мгновенные значения параметров турбулентного потока как сумму осредненного во времени значения параметра, около которого происходят мгновенные колебания, и его турбулентной пульсации. Так, по Рейнольдсу мгновенная скорость потока и, в проекции па ось (1 = х, у, г) может быть записана в виде  [c.54]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]


Теплопередача, т. е. процесс распространения тепла в пространстве или передачи тепла от одного тела к другому вследствие разности температур, может происходить путем теплопроводности, конвекции и теплового излучения. При изучении движений газа следует иметь в виду, что теплопроводность (т. е. передача тепла между непосредственно соприкасающимися частями среды, происходящая вследствие молекулярного переноса) практически почти всегда сопутствует конвективному теплообмену (т. е. теплопередаче, происходящей из-за перемещения в пространстве частиц жидкости). Поэтому обычно эти два явления объединяют, вводя понятие о теплообмене вследствие соприкосновения. При этом в технических задачах в ряде случаев можно пренебречь теплопроводностью по сравнению с теплопередачей вследствие вынужденной конвекции, т. е. по сравнению с теплопередачей в потоке, вызваннем внешними причинами (движением самолета, насосом, воздушным винтом и т. д.).  [c.516]

Итак, было показано, что движение жидкой частицы носит. сложный характер и является результатом сложения трех видов Wi движения поступательного, вращательного и деформационного. Поток, в котором частицы испытывают вращение, называется вихревым, а составляющие угловой скорости вращения шг, (1)2—компонентами вихря. Для характеристаки вращения используется понятие о роторе скорости rot К, выражаемом в виде rot F = 2[c.74]

В определениях понятия турбулентность , сформулированных разными авторами, в той или иной степени отражаются рассмотренные выше особенности турбулентного движения. Дж. И. Тейлор и Т. Карман /287, 371/ дают следующее определение турбулентности Турбу-лентность - это неупорядоченное движение, которое в общем случае возникает в жидкостях, газообразных или капельных, когда они обтекают непроницаемые поверхности или же когда соседние друг с другом потоки одной и той же жидкости следуют рядом или проникают одн[н в другой . И. О. Хинце несколько уточняет определение турбулентности /253/ Турбулентное движение жидкости предполагает наличие неупорядоченного течения, в котором различные величины претерпевают хаотическое изменение во времени и по пространственным координатам и при этом могут быть выделены статистически точные их осред-ненные значения . Р. Р. Чуг аев дает такое определение /256/ Движение турбулентное - движение кидкости, при котором частицы жидкости перемешиваются по случайным неопределенно искривленным траекториям, имеющим пространственную форму при этом движение траекторий частиц, проходящих в разные моменты времени через неподвижную точку пространства, имеют различный вид данное движение носит беспорядочный, хаотичный характер и сопровождается постоянным как бы поперечным перемешиванием жидкости, причем это движение характеризуется наличием пульсаций скорости и пульсаций давления . В терминологии АН СССР Гидромеханика /10/ определение турбулентного движения дается так Турбулентное движение - движение жидкости с пульсацией скоростей, приводящей к перемешиванию ее часггиц . Более емким является определение, данное М. Д. Миллионщи-ковым Турбулентный режим - это статистически упорядоченный обмен, вызванный вихревыми образованиями различного масштаба /148/.  [c.13]

Виды динамических систем. По характеру ур-ний и методам исследования Д. с. делят на классы. Конечномерные и бесконечномерные (распределённые) Д. с.—системы с конечномерным и бесконечномерным фазовым пространством. В конечно-мерно.м случае консервативные и диссипативные Д. с. — системы с сохраняющимся и несохраняющимся фазовым объёмом. Г амильтоновы системы с ф-цией Гамильтона, не зависящей от времени, образуют подкласс консервативных систем. У диссипативных систе.м с неогранич. фазовым нространством часто существует ограниченная область в нём, куда попадает навсегда любая траектория. Д. с. с н е п р е-рывным временем (потоки) и Д. С. с дискретным временем (каскады) дискретность времени иногда отражает существо реального процесса (дискретность моментов прохождения импульса через усилитель п оптическом квантовом генераторе, сезонность в экологии, смена поколений в генетике н т. д.). Грубые и пегрубые Д. с. понятие грубости (структурной устойчивости) характеризует качественную неизменность типа движения Д. с. при малом изменении её параметров. Значения параметров, при к-рых система перестаёт быть грубой, наз. б и ф у р-к а ц и о н н ы м II (см. Бифуркация). При размерности фазового пространства больше 2 могут существовать целые области в пространстве пара.метров, где Д. с. оказывается негрубой.  [c.626]

Понятие потока описывает пучок траекторий в фазовом пространстве, который начинается на множестве близких начальных условий. Для тех, кто занимается колебаниями в инженерных системах, наиболее близок пример потока, связанный с непрерывным движением частицы. Однако определенную качественную и количественную информацию о системе можно получить, анализируя эволюцию параметров системы на дискретно выбранных моментах времени. В частности, в этой книге мы обсудим, как получить разностные эволюционные уравнения для непрерывно эволюционирующих систем с помощью сечения Пуанкаре. Отображения Пуанкаре иногда помогают отличить друг от друга движения качественно различающихся типов, например периодические, квазипериодические и хаотические. В некоторых задачах не только время принимает дискретные значения, но и информация о параметрах системы оказывается ограниченной конечным набором значений или категорий, как, например, красный или синий, нуль или единица. Например, в задаче с парой потенциальных ям (см. рис. 1.2, б) нас может интересовать только, в какой яме находится частица, правой (К) или левой (Ь). Тогда траектория может описываться последовательностью символов ЬККЬКЬЬЬК,. ... Периодическая орбита может иметь вид ЬКЬК. .. или ЬЬКЬЬК. ... На современном новом этапе развития нелинейной динамики для описания эволюции физических систем применяются модели всех трех типов (см. обсуждение символической динамики в [26] или [211]).  [c.33]


Условие (а) представляет собой математическую формулировку геометрического подобия. Понятие подобия может быть распрострэнено на любые физические явления. Например, если расшатривать подобие движения двух потоков жидкости, то речь идет о кинематическом подобии если рассматривать подобие сил, вызывающих подобные движения, — то о динамическом подобии. Наконец, если говорят о подобии температур и тепловых потоков, то имеют в виду тепловое подобие.  [c.235]


Смотреть страницы где упоминается термин Понятие о потоке. Виды движения : [c.79]    [c.45]   
Смотреть главы в:

Гидравлика Издание 3  -> Понятие о потоке. Виды движения



ПОИСК



Виды потоков

Движение — Виды

Поток понятие

Поток—см. Движение



© 2025 Mash-xxl.info Реклама на сайте