Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие способы статических испытаний

Наиболее распространенным способом статического испытания металлов является испытание на растяжение, при котором определяются различные характеристики механических свойств металлов предел прочности, относительное удлинение, относительное сужение и другие.  [c.7]

Для определения основных механических характеристик пластмасс проводят испытания на растяжение, сжатие, статический изгиб, твердость и на ударный изгиб. Образцы для испытаний могут быть изготовлены механической обработкой из плит, листов, прессованием, литьем под давлением и другими способами формования. Способ и режим изготовления образцов устанавливаются техническими нормами на пластмассы.  [c.158]


Статическую твердость принято вычислять как отношение вертикальной нагрузки к площади поверхности отпечатка (II.1). Другим способом, предложенным Мейером и не получившим широкого распространения, является расчет твердости по площади проекции отпечатка. В дальнейшем эту твердость будем называть твердостью по Мейеру и обозначать NM. Кроме того, различают динамическую твердость, представляющую собой отношение энергии деформирования к объему отпечатка. Все три способа расчета в случае получения подобных отпечатков при испытании на твердость одного и того же материала с разными нагрузками должны обеспечивать постоянство значений твердости,  [c.37]

Прочность места сшивки (при статических испытаниях) не уступает в среднем прочности соединения концов другими способами, а при предварительных испытаниях срока службы  [c.442]

Описана методика эксперимента для точного измерения сопротивления инициированию разрушения конструкционных сталей при динамическом нагружении с чрезвычайно высокими скоростями. В установке использован нагружающий стержень Кольского (надрезанный стержень Гопкинсона), что позволяло нагружать до разрушения стержневой образец диаметром 25,4 мм с предварительно созданной кольцевой усталостной трещиной быстро нарастающим импульсом растягивающих напряжений, возникающим в результате взрыва заряда взрывчатого вещества. При помощи известной методики Кольского измерялось среднее напряжение в месте разрушения как функция времени. Раскрытие трещины как функция времени измерялось оптическим способом, и в результате для каждого испытания была получена полная диаграмма нагрузка — деформация. Полученные данные позволяли определять критическое значение коэффициента интенсивности напряжений /Си при скоростях Ri свыше 10 (фунт/дюйм )/с [3,5-10 (кг/ /мм 2)/с], что примерно на два порядка выше скоростей нагружения, достигаемых при использовании других известных способов. Результаты динамических испытаний стали SAE 4340 и холоднокатаной стали 1020 сравнивались с результатами статических испытаний на образцах аналогичной формы.  [c.151]

Наряду с хладноломкостью давно известна и ударная хрупкость, т. е. переход статически вязкого материала в хрупкое состояние при ударных нагрузках. Такое поведение наблюдалось у цинка, крупнозернистого железа, сталей, подверженных отпускной хрупкости, у многих пластмасс, смол и других материалов [9]. Изменение напряженного состояния также может существенно влиять на механическое состояние материалов. Так, например, многие литые алюминиевые сплавы и чугуны при растяжении весьма хрупки (удлинение порядка 1—2%), а при сжатии довольно пластичны (укорочение порядка нескольких десятков процентов). Некоторые стали пластичны при статических испытаниях на растяжение гладких образцов, но оказываются хрупкими при статическом вдавливании пуансона в центр диска, опертого по контуру. Решающим в этих случаях является изменение способа нагружения или формы образца, ведущих к изменению напряженного состояния [11].  [c.257]


Необходимым условием для правильного проведения статического испытания на растяжение, как и вообще статических испытаний, является надежное определение усилия в каждый момент испытаний. Усилия, возникающие в испытательных машинах, можно измерить с помощью следующих способов уравновешивания силы подвижным грузом уравновешивания силы маятниковым рычагом, а также с помощью пружинной, гидравлической и другой тензометрической аппаратуры.  [c.13]

В связи с этим весьма показательны результаты испытаний сварных соединений стали ЗОХГСНА, выполненных электроннолучевой и другими способами сварки, на повторно-статический изгиб. Эти испытания показали, что качество соединений, выполненных электроннолучевой сваркой, значительно превосходит таковое при других способах сварки и практически равноценно основному металлу.  [c.566]

Другим важным методическим моментом является правильный выбор значений длительной пластичности. При этом в связи с выраженной зависимостью величины предельного повреждения по уравнению (6) от изменения во времени располагаемой пластичности материала необходимо использовать соответствующие корректно полученные данные о пластичности. Представляется, что оптимальным является привлечение результатов экспериментов, выполненных на материале одной плавки с сохранением основных методических подходов (тип испытания, образец, способ нагрева, методика измерения нагрузок и температур, точность аппаратуры) [16]. Для характеристики роли изменения располагаемой пластичности в формировании величин предельного повреждения на рис. 10 приведены данные расчета повреждений по уравнению (6) без учета зависимости = f (t). Там же приведены данные, полученные по формуле (5) при подсчете накопленного длительного статического повреждения в обычной временной форме  [c.49]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Твердость — это сопротивление тела внедрению индентора — другого твердого тела. Способы испытания подразделяются на статические и динамические.  [c.129]

Вследствие многообразия видов механических разрушений не может быть какого-то единого универсального метода оценки сопротивления разрушению. Процессы разрушения- и соответствующие им оценочные виды испытаний следует в первую очередь разделять в зависимости от способа силового воздействия. В этой связи важная группа методов оценки сопротивления разрушению относится к кратковременным разрушающим испытаниям при статическом и динамическом нагружениях. Другая группа методов охватывает длительные испытания при циклическом и статическом нагружениях, которым соответствует усталостное, или замедленное, разрушение.  [c.235]

Надежность конструкции индуктивных датчиков давлений проверяется длительным испытанием в камере с маслом, в которой создается статическое давление 3 кг см и переменное 1,5 кг см с частотой 400 гц в течение 1 10 циклов. При работе индуктивные датчики включаются в одно из плеч измерительного моста. Вторым плечом служит датчик, находящийся при таких же температурных условиях, как и рабочие, но с мембраной, изолированной от измеряемых давлений дополнительной крышкой или иным способом. Такой датчик может быть один на большую группу рабочих датчиков, подключаемых поочередно в измерительный мост. Двумя другими плечами измерительного моста служат активные сопротивления.  [c.137]


В зависимости от формы и рода внедряющегося тела, быстроты и глубины внедрения и нек-рых других условий характеристика мягкости (или соответственно твердости) получает разные количественные значения, и данные, полученные одним способом испытания, не только по числовым значениям, но и по взаимному соотношению и порядку величин могут не соответствовать значениям, полученным при других условиях испытания. Характеристика мягкости (или соответственно твердости) представляет собой сложный комплекс признаков,- родственных между собой, но друг друга не покрывающих и до сих пор не проанализированных достаточно отчетливо. В частности следует еще отметить понятие пластичности, которое иногда сближается с понятием мягкости. Охватывая суммарно комплекс признаков, испытание на мягкость в зависимости от способа его проведения может в большей или меньшей степени выделять один из признаков комплекса. Поэтому при данных о мягкости тела непременно д. б. указываемы процесс испытания и испытательная установка, при помощи к-рой данная характеристика была получена. В особенности важно указание на скорость деформации тела и в соответствии с этим различение мягкости хотя бы двух родов, напр, мягкости статической, установленной при весьма медленных деформациях, и мягкости динамической, когда скорость деформации была весьма велика.  [c.213]

Основные трудности этого способа определения осевых усилий — необходимость выполнения в корпусе машины большого числа каналов для отбора статического давления, параллельное использование большого числа приборов при кратковременном испытании или поддержание постоянства режима работы машины при последовательном подключении приборов, сложность обработки большого объема измерений. Последние два препятствия исчезают в связи с разработкой точных датчиков давления, магнитной регистрацией показаний и обработкой результатов измерений на ЭВМ. Однако трудности выполнения каналов в серийных машинах, а также связанное с этим ослабление корпуса и снижение надежности машины ограничивают применение этого способа главным образом экспериментальными установками. Преимуществом его является получение детальной картины нагружения осевыми силами отдельных элементов ротора, определение эпюры давлений около наиболее нагруженных элементов, необходимое для регулирования осевых усилий в нужном направлении, возможность переноса результатов исследований на другие конструкции машин и элементов ротора. Этот способ исследования применяется для прямого подтверждения теоретических методов.  [c.96]

Определение твердости представляет собой другой вид статических испытаний, очень широко используемый в заводской и исследовательской практике. Этот вид испытакг1Й, прост, не требует много времени и не связан с разрушением материала. Под твердостью понимают сопротивление местной пластической деформации на поверхности. Способы и условия создания деформации ири определении твердости весьма разнообразны. Самое большое распространение получили методы, прн которых стандартный наконечник (индентор) медленно вдавливается в испытываемый матерпал с определенной силой. В результате возникает местная деформация материала, выражающаяся в образовании отпечатка, площадь или глубина которого после снятия нагрузки, служит мерой твердости.  [c.58]

В. А. Барвинок и Г. М. Козлов определяли коэффициент Пуассона плазменных покрытий звуковым методом, путем возбуждения в образце стоячей волны первого тона [89]. Этот динамический способ выгодно отличается от статических испытаний, так как усиление переменного сигнала от тензорезисторов не составляет особых затруднений. В основе метода лежит особенность деформации стержня постоянного поперечного сечения при возбуждении в нем стоячей волны первого тона. Периодические продольные деформации растяжения я сжатия с частотой собственных колебаний стержня вызывают поперечные сокращения слоев материала, величина которых зависит от коэффициента Пуассона. Эти деформации измеряются тензорезисто-рами типа 2ФКПА с базой 5 мм и сопротивлением 200 Ом, которые наклеиваются на образец прямоугольного сечения. Схема для измерения коэффициента Пуассона состоит из двух мостов Уитстона, один из которых служит для определения продольной деформации, другой — для измерения поперечной деформации. Коэффициент Пуассона находится по формуле  [c.53]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]

G 01 [Измерение механического напряжения, крутящего момента, работы, механической энергии, механического КПД или давления газообразных и жидких веществ или сыпучих материалов Р-- Линейной или угловой скорости, ускорения, замедления или силы ударов. Индикация наличия, отсутствия или направления движения R — Электрических и магнитных величин) D — Индикация или регистрация в сочетании с измерением вообще, устройства или приборы для измерения двух или более переменных величин, тар1чфные счетчики, способы и устройства для измерения hjhi испытания, не отнесенные к другим подклассам i - - Взвешивсишс, М -Проверка статической и динамической балансировки машин, испытания различных конструкций или устройств, не отнесенные к другим подклассам N — Исследование или анализ материалов путем определения их хи.мических или физических свойств]  [c.40]


Методы кратковременных статических прочностных испытаний при нормальных и повьппенных до 1500 К температурах достаточно хорошо известны и освещены в литературных источниках [64], а также решаменти-рованы стандартами (ГОСТ 9.910-88, ГОСТ 25.503-80, ГОСТ 25.506-85, ГОСТ 9651-84, ГОСТ 14019-80) на основные виды испытаний материалов при растяжении, сжатии, изгибе, кручении и др. В дальнейшем механические испытания тугоплавких материалов, проводимые в интервале 1500...3300 К, будут считаться высокотемпературными. При высокотемпературных испытаниях тугоплавких материалов для сопоставимости определяемых характеристик важно обеспечить соблюдение закона подобия механических испытаний в отношении формы и размеров образцов, одинаковых условий силового и теплового нагружения, учета влияния состава среды, способов нагрева и других факторов [3].  [c.278]

Хардрат и Омен (1006] показали, что величины коэффициента концентрации напряжений в пластической области, найденные этим способом, превосходно согласуются с экспериментами по статическому нагружению надрезанных образцов, когда пластическая деформация не превосходит 3%. Для усталостного случая Хардратом и другими авторами 1(94] показано, что величина коэффициента концентрации напряжений в пластической области примерно равна эффективному коэффициенту концентрации напряжений для среднего числа циклов (в области от 10 до 10 циклов). Однако один из трех испытанных материалов — закаленная нержавеющая сталь — обнаружил расхождения, которые, возможно, были связаны с механизмом упрочнения в процессе усталостных испытаний.  [c.184]

Установить постоянную связь предела усталости с другими механич. свойствами не удается. Ближе других связано с твердостью по Бринелю, отчасти — с временным сопротивлением (af составляет 0,36—0,68 от СГ , Мур и Коммерс). По отношению к пределу упругости вf оказывается то ниже то выше и даже превышает иногда предел текучести (мягкое железо, медь), что естественно, т. к. в циклич. состоянии устанавливается свой особый предел упругости (текучести), отличный от статического. На этом основаны ускоренные способы определения а а) при испытании изгибам измеряют с большой точностью прогиб конца образца на ходу машины при все возрастающих нагрузках, наблюдая момент отклонения от пропорциональности (Гаф) б) измеряют темп-ру образца при возрастающих нагрузках и устанавливают момент резкого увеличения нагревания (Мур и Коммерс, Стромейер) в) измеряют рассеяние энергии, приходящееся на один цикл (площадь петли гистерезиса), и определяют момент резкого его возрастания (Лер). Все эти способы дают надежные результаты лишь для не особенно твердых я притом черных металлов. При несимметричных циклах величина безопасного интервала усталости уменьшается по мере возрастания среднего растягивающего напряжения в цикле и стремится к нулю при приближении крайнего напряжения к временному сопротивлению. Зависимость предела усталости от отношения крайних на-  [c.289]

ХРУПКОСТЬ МЕТАЛЛОВ, свойство металла при статической нагрузке рваться, ломаться или разрушаться без заметной остаточной деформации. Если металл перед разрывом обнару- кивает пластич. деформации (см. Деформация пластическая), а остаточных деформаций не получается только при ударной нагрузке, то это свойство называется ударной хрупкостью. X. м. при низких и обыкновенных иногда называется холодноломко-с т ь ю, а X. м. в раскаленном состоянии—к р а с-н о л о м к о с т ь ю. Хрупкость зависит от целого ряда факторов от структуры металла, ориентации кристаллитов, от примесей, от самого метода испытания и т. д. Один и тот же слиток металла в одном направлении м. б. хрупким, а в другом пластичным. Начиная приблизительно с 1920 года, металловедение сделало большие успехи благодаря тому, что был открыт ряд способов получения металлич. монокристаллов, т. е. одиночных кристаллов, в виде стержней. Детальные исследования механических свойств этих монокристаллов, произведенные нем. физиками (Полани, Э. Шмид, Закс и их сотрудники) и англ. металловедами (Тейлор, Карпентер, мисс Элам и др.), дали весьма ценные ре-. ультаты для понимания механизма хрупкости и пластичности (см.). Эти исследования показали, что в металлич. монокристаллах существуют вполне определенные кристаллографич. плоскости—плоскости с наиболее плотной упаковкой атомов, по к-рым начинается трансляция, или скольжение, одних слоев относительно других. Это явление начинается тогда, когда с двигающее, или скалывающее, напряжение в данной плоскости и по вполне определенному направлению достигает некоторого критич. значения 5. Кристаллографич. направление в плоскости скольжения, по которому атомы расположены наиболее близко друг к другу, является направлением скольжения.  [c.319]


Смотреть страницы где упоминается термин Другие способы статических испытаний : [c.278]    [c.63]    [c.17]    [c.252]   
Смотреть главы в:

Механические свойства металлов Издание 3  -> Другие способы статических испытаний



ПОИСК



Другие статические испытания

Испытание статическое



© 2025 Mash-xxl.info Реклама на сайте