Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитострикционные сплавы

Сплавы с высокой магнитострикцией применяют для изготовления сердечников генераторов акустических колебаний. Пакет из тонколистового магнитострикционного сплава, помещенный в электромагнитную катушку, по которой пропускается переменный ток, создает продольную вибрацию определенной частоты. Такой вибратор, погруженный в жидкость, посылает пучки акустических колебаний, которые, отражаясь от металлических и других предметов, возвращаются в приемник колебаний. Зная направление пучка и интервал времени между выходом и входом пучка, можно обнаружить искомый предмет. На этом принципе построены различные гидроакустические приборы, например эхолоты для измерения глубины дна, приборы для связи между судами, маяками и т. д. Материал, из которого изготовляют сердечник эхолота, должен обладать коррозионной стойкостью в морской воде, иметь  [c.175]


Магнитные материалы — см. Сплавы со специальными магнитными свойствами, Электротехнические стали Магнитострикционные сплавы 238  [c.434]

Пластины магнитострикционных преобразователей изготовляют обычно из прокатного листа толщиной 0,1—0,3 мм, поставляемого в рулонах определенной ширины. В листах магнитострикционных сплавов всегда имеет место анизотропия магнитных свойств. Вследствие этого штамповку пластин для пакетов преобразователей следует производить таким образом, чтобы продольная ось пластины совпадала с направлением проката листа.  [c.122]

Таблица 16.8. Свойства магнитострикционных сплавов Таблица 16.8. Свойства магнитострикционных сплавов
Свойства магнитострикционных сплавов  [c.379]

В настоящее время для паяния алюминия применяются ультразвуковые паяльники с частотой 20 тысяч периодов в секунду. Такая частота возбуждается с помощью электронного генератора и прилагается к наконечнику паяльника, изготовленного в хвостовой части из магнитострикционного сплава (магнитострикция — это способность металлов или сплавов, например никелевых, изменять свои геометрические размеры в магнитном поле).  [c.218]

A Л и 3 a Д e 3. И,, Новые магнитострикционные сплавы Fe-Pd и Ni-Pd, ДАН СССР, 73, 79 (1950),  [c.630]

Смешанные способы возбуждения возмущений. В тех случаях, когда требуется получить и сохранить возмущения малой амплитуды, используются электрические и электронные способы возбуждения. В этих способах для приведения в действие преобразователя, превращающего электрическую энергию возбуждающего тока в механическую энергию волны напряжений в теле, используется переменный ток, частота волн при этом лежит между 20 кГц и 50 мГц. С помощью соответствующих контуров можно получать или непрерывный ряд волн, или импульсы, состоящие из коротких серий волн высокой частоты, повторяющихся регулярно с низкой частотой. Для этого используются преобразователи, принцип действия которых основан на магнитострикционном или пьезоэлектрическом эффектах. Материалами для пьезоэлектрических преобразователей кроме кристаллов кварца служат искусственные ферроэлектрические кристаллы (в частности, титанат бария в виде поликристаллической керамики), имеющие по сравнению с естественными кристаллами большую чувствительность и меньшее сопротивление. Однако температура Кюри искусственных кристаллов сравнительно низка (при нагревании выше этой температуры пьезоэлектрические свойства пропадают). Материалами для магнитострикционных преобразователей служат ферромагнитные элементы и сплавы. Максимальные деформации в обоих случаях определяются механическими свойствами материала тела. Для возбуждения слабых импульсов напряжений используют искровой способ, предложенный Кауфманом и Ревером [52]. Преимущество этого способа состоит в том, что искра действует как точечный источник, тогда как пьезоэлектрический преобразователь, благодаря дифракции, дает сложную волновую картину.  [c.17]


Теория магнитострикционных напряжений. Если ферромагнитный материал намагничивать при высокой температуре в процессе отжига, то напряжения, возникающие при магнитострикционной деформации, будут сниматься в результате пластического течения вещества или процесса релаксации. Намагничивание эффективно только для сплавов, точка Кюри которых выше 450—500° С охлаждение в магнитном поле нужно производить медленно. Однако эта теория не применима к монокристаллам, в которых нет противодействий изменению его внешней формы. По этой теории термомагнитная обработка должна быть эффективна для всех материалов, включая чистые металлы, у которых Xs O. Эта теория предсказывает максимальный эффект для материалов с наибольшей магнитострикцией kg. В то же время, наибольший эффект при термомагнитной обработке получен у сплава железа с 6,5% Si, когда Xg = 0.  [c.155]

Железокобальтовые сплавы для магнитострикционных датчиков, несмотря на высокую магнитострикцию, применяют ограниченно из-за низкого удельного электросопротивления и высокой стоимости. Кроме того, железокобальтовые сплавы не должны иметь примеси. Незначительные доли элементов, образующих твердые растворы внедрения, резко снижают магнитострикцию.  [c.178]

Сплав железа с 13—14% А1 имеет = 40-10" . Основное преимущество этого сплава заключается в том, что удельное электросопротивление этого сплава 150 X X 10" ом-м. (150 мком. см). Поэтому данный сплав можно применять в виде листов толщиной 0,2—0,25 мм, что значительно удешевляет магнитострикционные генераторы, в то же время этот сплав обладает недостаточно хорошими пластическими свойствами (деформация возможна только при определенных условиях) и повышенной склонностью к коррозии.  [c.178]

Рнс. 9-16. Зависимость магнитострикционной деформации от напряженности магнитного поля для некоторых материалов. Содержание компонентов в сплавах указано на кривых в процентах по массе  [c.282]

Перспективным направлением развития технологии пайки металлов и неметаллических материалов является использование ультразвука. Оборудование в этом случае состоит из генератора ультразвуковой частоты и электропаяльника с ультразвуковым магнитострикционным вибратором или из ванны с расплавленным припоем, в котором возбуждаются преобразователем колебания ультразвуковой частоты (около 20 ООО гц). Особенно удобен этот способ пайки деталей из алюминия и алюминиевых сплавов, так как высокочастотные колебания в расплавленном припое разрушают оксидную пленку и отпадает необходимость во флюсе.  [c.278]

Изыскания новых магнитострикционных материалов до последнего времени велись в основном по линии исследования и получения металлических сплавов, обладающих ценными для электроакустических преобразователей свойствами. В последние годы привлекли 220  [c.220]

Магнитные суспензии — Производство 3—173 Магнитный анализ 3—177 Магнитный гистерезис 3 — 181 Магнитный контроль—Приборы 3—177 Магнитный поток 1 (1-я) — 514 Магнитогорские руды — см. Руды железные Магнитомягкие сплавы 3 — 499 Магнитострикционные датчики — Характеристика 9 — 672 Магнитоэлектрические приборы 1 (1-я) — 523 Магниты — Температурный коэфициент 3 — 185 Характеристика 3—185 -----постоянные — Расчёт 3—184 Температурный коэфициент — Измерение 3—184 Магния окись — Объёмный вес 1 (1-я) — 484  [c.138]

Различные металлы по-разному противостоят эрозии. В настоящее время не существует расчетных методов оценки эрозионной стойкости материалов. При экспериментальном лабораторном исследовании эрозионной стойкости материалов применяются обычно следующие способы 1) удар струи жидкости по вращающимся образцам, 2) удар капель или струи жидкости (влажного пара) по неподвижным образцам, 3) протекание жидкости с кавитацией у поверхности образца (кавитационные сопла, щелевые установки), 4) испытания образцов на магнитострикционном вибраторе, 5) исследования погруженных в жидкость неподвижных образцов с помощью кольцевого возбудителя колебаний жидкости у поверхности образца. Интенсивность эрозионных разрушений образцов из одинаковых материалов зависит от выбранного способа испытаний. Однако если испытать несколькими способами группу различных материалов, то они по своей эрозионной стойкости расположатся практически в одинаковой последовательности независимо от способа испытаний. Это правило объясняется общностью природы эрозионного разрушения при ударах капель или струй жидкости и при кавитации в жидкой среде и может быть использовано для свободного выбора удобного в данных конкретных условиях способа испытаний. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые ста-86  [c.86]


При пайке алюминия и его сплавов чаще всего используются оловянно-цинковый (90% олова и 10% цинка) или оловянно-кадмиевый припой. Оловянно-цинковый припой вызывает наименьшую электролитическую коррозию основного металла. На механизм ультразвуковой пайки большое влияние оказывает возникающая в расплавленном припое кавитация. Рабочий стержень ультразвукового паяльника, нагреваемый от обычного теплового элемента, расплавляет припой, который затем растекается по поверхности спаиваемого шва. При возбуждении ультразвуковых колебаний стержня паяльника в силу мощных гидравлических ударов, образующихся при захлопывании кавитационных пузырьков, окисная пленка разрушается и расплавленный припой получает доступ к чистой поверхности основного металла, что обеспечивает хорошее качество спая (фиг. 32). Наибольшая эффективность процесса получается при низкочастотных ультразвуковых колебаниях, так как интенсивность кавитации повышается при уменьшении частоты. Поэтому для возбуждения ультразвуковых колебаний при пайке используются магнитострикционные вибраторы. Для того чтобы стержень паяльника не разрушался под действием кавитации, он должен быть прочнее окисной пленки. Поэтому рекомендуется изготовлять его из сплава серебра с никелем или покрывать слоем хрома.  [c.909]

Основной частью магнитострикционного преобразователя является пакет пластин из ферромагнитного материала, обладающий способностью деформироваться в магнитном поле. Например, пакет пластин из никеля укорачивается, а пакет из железокобальтового сплава пермендюра удлиняется, независимо от перемены направления магнитного поля.  [c.112]

Среди аморфных металлических материалов магнитные материалы применяются наибО лее широко. В Японии и США они уже. используются для изготовления магнитных экранов, магнитных головок, микрофонов, различных элементов звуковоспроизводящих устройств, магнитострикционных линий задержки, фильтров, сердечников управляющих обмоток и т. д. Ведутся новые успешные разработки. Примеры использования аморфных магнитных сплавов приведены в табл. 10.3.  [c.299]

К магнитно-мягким материалам относятся чистое (электромагнитное) железо, листовая электротехническая сталь, железо-армко, пермаллои (железоникелевые сплавы), а также металлические стекла и некоторые ферриты. К магнитно-мягким материалам специального назначения относятся термомагнитные сплавы и магнитострикционные материалы.  [c.103]

Особая область применения аморфных сплавов на основе железа с добавками кобальта — это элементы магнитно-механических систем, поскольку они обладают высокой магнитострикцией, особыми упругими свойствами и высокой чувствительностью магнитных свойств к приложенным нагрузкам. Они используются для магнитострикционных вибраторов, линий задержки, механических фильтров, упругих датчиков. Сплавы с низкой температурой Кюри применяют как датчики температуры.  [c.556]

В металловедении для изучения кавитационной стойкости сталей и сплавов наибольшее распространение получили струеударные и магнитострикционные установки.  [c.265]

Потери энергии при магнитострикционных колебаниях превращаются в теплоту и вызывают нагрев изделий. Чем выше в, тем меньше изменяются магнитные свойства из-за этого нагрева. Например, у сплава 49К2Ф удельные потери при 5 = 1 Тл и /, равной 100 и 1000 Гц, составляют 2 и 20 Вт/кг соответственно, а при В = 2 Тл и таких же значениях / — 6 и 60 Вт/кг. Свойства магнитострикционных сплавов приведены в табл.16.8.  [c.549]

Практически частоту и длину плоских пакетных преобразователей определяют по графику на рис. 7-Л. Необходимо иметь в виду, что при выборе геометрических размеров пакета оптимальным является такое соотношение ширины стержней я окон, при котором площадь сечения стержней 5ст равна площади сечения окон 5ок-В листах магнитострикционных сплавов всегда имеет (место анизотропия магнитных свойств. Вследствие этого для использования их наибольших магаитостри кционных свойств штамповка пластин для пакетов преобразователей производится таким образом, чтобы про-  [c.171]

ЕЕекоторые ферромагнитные металлы (никель, железо, кобальт п др.) и их сплавы обладают свойством сжиматься или расширяться под действием магнитного поля. Это явление, называемое маг-нитострикцией, используется для получения ультразвуков большой интенсивности в магнитострикционных излучателях.  [c.243]

К третьим относятся сплавы с высокой магнитостракцией (системы Fe—Pt, Fe—Со, Р е—А1). Изменения линейного размера А/// образцов материалов при продольной магнитострикцин, как видно из рис. 9-16, положительны и лежат в пределах (40—120)-10 . В качестве магнитострикционных материалов применяются также чистый никель (см. рис. 9-4), обладающий большой отрицательной ыагнитострикцией, никель-кобальтовые сплавы, некоторые марки пермаллоев и различные ферриты (стр. 288). Явление магнито-стрикции используется в генераторах звуковых и ультразвуковых колебаний. Магнитострикционные вибраторы применяются в технологических установках по обработке ультразвуком хрупких и твердых материалов, в дефектоскопах, а также в устройствах преобразования механических колебаний в электрические и т. п.  [c.283]

Магнитострикционные преобразователи из никеля, пермен-дюра или других металлов и сплавов широко применяют в низкочастотной (до 40 кГц) ультразвуковой технике. Однако на высоких частотах для таких приборов характерны большие потери, обусловленные вихревыми токами, в связи с чем преобразователи изготовляют из магнитодиэлектриков — ферритов, оксиферов. В таком варианте магнитострикционные преобразователи могут заменить пьезоэлектрические, хотя распространения они не получили, так как более сложны в изготовлении и отличаются узкой полосой пропускания частот.  [c.61]


А. Ф. Маскаева, С. Ю. Гуревича i[l—3] показали, что ультразвуковые волны в инварных сплавах, техническом железе, хромистых и углеродистых сталях возбуждаются за счет магнитострикционных сил. Особенно эффективно возбуждение ультразвуковых волн за счет магнитострикционных сил происходит при повышенных температурах. Таким образом, для выяснения закономерностей возбуждения ультразвуковых волн в ферромагнетиках наряду с амперовыми силами необходимо учитывать магнитострикционные силы. К сожалению, до сих пор не существует корректного аналитического выражения для объемной плотности магнитострикционных сил в ферромагнетиках. При анализе магнитострикционных явлений в ферромагнитных поликристаллах обычно пользуются выражением для объемной плотности магнитострикционных сил в парамагнетиках, которое было впервые получено Таммом [4]  [c.246]

Магнитострикционные металлы и сплавы. Наиболее употребительным является чистый никель тонколистовой прокатки. Для сердечников применяют никель марки Н в виде листов и лент толщиной 0,1 мм и менее. Пластины, из которых набирают сердечники, штампуют из листа или ленты, а затем нагревают на воздухе до 800 °С и выдерживают при этой температуре 10—15 мин для образования плотной оксидной пленки, являющейся диэлектриком и одновременно предохраняющей материал отдальнейщей коррозии. Оксидированные пластины коррозионноустойчивы как в атмосфере (вплоть до тропической), так и морской воде. Коэффициент магнитострикции чистого никеля = —37-10" . Знак минус показывает, что под воздействием магнитного поля сердечник укорачивается.  [c.216]

Для изготовления магнитострикционных вибраторов применяются ферромагнитные материалы — никель, кобальт и их сплавы. Хорошим магнитострикционным свойством обладает сплав пермендюр. Преимуществом магнитострикционных вибраторов перед другими является их большая механическая прочность и возможность присоединения к ним трансформаторов скорости, что позволяет значительно увеличить амплитуду излучаемых колебаний. При наличии трансформатора скорости можно производить ультразвуковую пайку при сравнительно высоких температурах без опасения потери работоспособности стриктора от нагревания его до точки Кюри. В диапазоне более высоких частот используются пьезоэлектрические вибраторы — кварцевые и керамические из титаната бария. Широкое практическое применение получили вибраторы из поляризованного титаната бария. Эти вибраторы позволяют получить большую акустическую мощность за счет фокусирования.  [c.220]

В [Л. 72] приведены результаты сравнительных исследований эрозионной стойкости кобальтового стеллита, алюминиевого сплава титана, стали марки 2X13 и технического титана на эрозионно-ударном стенде и на магнитострикционной установке. Эти результаты воспроизведены в табл. 3 и на рис. 30. Рассмотрение этих данных позволяет сделать вывод о том, что технический титан имеет низкое сопротивление эрозионному разрушению, Эрозионная стойкость исследованного алюминиевого сплава титана выше, чем у нержавеющей стали марки 2X13, но значительно ниже, чем у кобальтового стеллита.  [c.41]

МАГНИТОСТРИКЦИОННЫЕ МАТЕРИАЛЫ — ферромагнитные металлы и сплавы (см. Ферромагнетик) и ферримагнитные ферриты.., обладающие хорошо выраженными магнитострикц. свойствами (см. Магнито-стрищия) применяются для изготовления магнито-стрищионных преобразователей. Существуют метал-лич. и ферритовые М. и.  [c.8]

Магнитострикционные преобразователи в настоящее время изготовляют из пермендюра, гораздо реже из никеля, так как железокобальтовые сплавы обладают большим магнитострикционным эффектом, мало зависящим от повышения температуры. Точка Кюри, например, у пермендюра равна +980 °С, а у никеля только +380 С. Для снижения потерь на вихревые токи преобразователь собира-  [c.112]

Испытания на магнитострикционном вибраторе (частота колебаний 8000 Гц, амплитуда 0,07 мм), а также при соударении со струей воды показывают, что по кавитационно-эрозионной стойкости титан находится на уровне нержавеющих сталей. При испытании в морской воде с продуктами гниения под действием струи воздуха титан не корродировал в течение 10 ООО ч. Медные сплавы в этих условиях сильно корродировали [881. В непосредственной близости от последнего диска паровой турбины, т. е. там, где пар наиболее насыщен каплями воды, титан проявляет более высокую эрозионную стойкость, чем сталь типа 1X13 и монель-металл, но одинаковую со сталью типа 0Х18Н10Т [74].  [c.31]

Для магнитомягких материалов, основные требования к которым заключаются в минимальном значении Д и высоких значениях начальной, а также максимальной магнитной проницаемости ц = В/Н и индукции насыщения Д, оптимальные характеристики реализуются при размере кристаллитов менее 20 нм. В классическом сплаве Р1пете1 на основе железа, кремния и бора с добавками ниобия и меди, полученного контролируемой кристаллизацией из аморфного состояния, магнитная доменная структура в наночастицах Ре — 81 отсутствует, что в сочетании с взаимной компенсацией магнитострикционных эффектов в кристаллитах и аморфной матрице ведет к формированию очень низкой коэрцитивной силы (5—10 А/м), высокой начальной магнитной проницаемости при обычных и высоких частотах. За счет малой площади, ограниченной кривой перемагничивания, потери на пере-магничивание такого материала невелики.  [c.76]

В качестве магнитострикционных материалов обычно применяют никель, пермаллой (сплав никеля с железом), пермендюр (сплав кобальта с л<елезом), вибратит (никельцинковый с[)еррит) и др. В качестве пьезоэлектрических материалов применяют естественно поляризованные монокристаллы кварца, турмалина, сегнетовой соли и другие, а такл<е искусственно поляризованные керамику титаыата бария, титаната бария—свинца, цирконата-титаната свинца и др.  [c.231]

Магнитоупругий (магнитомеханический) резонанс обусловлен зависимостью модуля Юнга E j от магнитного поля, которая, в свою очередь, появляется из-за добавления к упругой деформации магнитострикцион-ной деформации, зависящей от ориентации вектора намагниченности. Наибольшее отличие модуля Юнга в состоянии магнитного насыщения от модуля Юнга в размагниченном состоянии (так называемый АЕ-эф-фект) наблюдается в образце с высокой магнитострикцией и с поперечной магнитной анизотропией, когда векторы намагниченности доменов расположены перпендикулярно направлению приложения поля. Такое состояние создается с помощью отжига в поперечном магнитном поле. К аморфной ленте с поперечной анизотропией вдоль ее длины прикладывается постоянное магнитное поле Н и переменное поле с малой амплитудой. Переменное поле из-за эффекта магнитострикции вызывает колебания размеров образца с частотой, в два раза большей частоты магнитного поля. Вдоль образца распространяется упругая волна со скоростью звука, равной (- ///у) , где у — плотность сплава. Резонанс наблюдается, когда на длине образца L укладывается целое число п полуволн, т. е. при частоте  [c.558]



Смотреть страницы где упоминается термин Магнитострикционные сплавы : [c.175]    [c.238]    [c.1647]    [c.119]    [c.643]    [c.232]    [c.172]    [c.527]    [c.175]    [c.134]    [c.407]   
Смотреть главы в:

Конструкционные, проводниковые и магнитные материалы (электроматериаловедение)  -> Магнитострикционные сплавы


Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.238 ]

Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.1439 ]



ПОИСК



Разрушение, рабочие жидкости, сплав магнитострикционные

Сплавы магнитострикционные высокоомные

Сплавы магнитострикционные изготовления 108 — Размеры магнитов 109 — Характеристика размагничивания

Сплавы магнитострикционные расширения

Сплавы магнитострикционные с высокими магнитными свойствами

Сплавы магнитострикционные упругости



© 2025 Mash-xxl.info Реклама на сайте