Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМИЧЕСКАЯ Элементы легирующие — Влияние

Обрабатываемость резанием 3 — 347 — Влияние легирующих элементов 3 — 348 — Влияние термической обработки — Коэфи-циент 3 — 350 — Влияние химического состава 3 — 348  [c.280]

Ударная вязкость 4 — 24 — Влияние включений, графита, легирующих элементов 4 — 24 — Влияние надрезов, температуры,, термической обработки, углерода 4 — 25  [c.341]

Электросопротивление — Влияние легирующих элементов 4 — 11 — Влияние термической обработки 4—12  [c.341]


Влияние легирующих элементов на механические свойства стали зависит от ее структурного состояния, которое определяется термической обработкой. Рассмотрим это влияние для двух структурных состояний стали.  [c.257]

При одинаковом размере зерна легирующие элементы оказывают индивидуальное влияние на температуру перехода в хрупкое состояние и работу развития трещины. Наиболее сильно понижает порог хладноломкости и увеличивает сопротивление распространению трещины никель. Введение 1 % Ni снижает порог хладноломкости после термического улучшения стали на 60-80°С и увеличивает критерий К с на 10—13 MПa м / . Такое благоприятное влияние обусловлено тем, что никель, снижая энергию взаимодействия дислокаций с атомами внедрения, облегчает их подвижность. Остальные элементы, за исключением небольших добавок хрома, марганца и молибдена, повышают порог хладноломкости.  [c.260]

Как правило, легирующие элементы, являющиеся /3-стабилизатора-ми, повышают прочность, жаропрочность и термическую стабильность титановых сплавов, несколько снижая их пластичность (см. рис. 14.6). Кроме того, они способствуют упрочнению сплавов с помощью термической обработки. Наиболее благоприятное влияние на свойства титановых сплавов оказывают Мо, V, Сг, Мп.  [c.413]

Легирующие элементы оказывают большое влияние на процессы, происходящие при термической обработке  [c.123]

Исследование проводили на образцах из специально выплавленных сталей заготовки для образцов подвергали предварительной термической обработке. Данные по влиянию водорода на свойства сталей частично опубликованы в работе [3]. Содержание легирующих элементов в исследуемых сталях и режимы термической обработки приведены в табл. 1.  [c.60]

Теоретическое значение таких диаграмм заключается в том, что они хотя и охватывают меньший опытный материал в сравнении с диаграммой сплавов железа с углеродом, так как для сталей с неодинаковым содержанием углерода и разных марок они различны, но зато содержат чрезвычайно важный фактор времени. Диаграммы изотермического превращения аустенита дают картину всех изменений аустенита (кинетику его превращения) при разных температурах, позволяют в наглядной форме объяснить происхождение и природу структур, получаемых при термической обработке. Они выявляют влияние температуры превращения на структуру и свойства стали. Эти диаграммы позволяют оценить действие величины зерна и легирующих элементов на превращение аустенита, глубину прокаливаемости, микроструктуру, механические и другие свойства стали. Наконец, они служат обоснованием теории термической обработки стали.  [c.178]


Легирующие элементы оказывают большое влияние на характер насыщения поверхности стальных изделий при химико-термической обработке. Так, при цементации легирующие элементы оказывают влияние на концентрацию углерода на поверхности, его распределение по глубине слоя, на количество и характер распределения карбидной фазы.  [c.127]

Конструкционные легированные стали имеют преимущества перед углеродистыми сталями, особенно после термической обработки. Это объясняется тем, что легирующие элементы оказывают сильное влияние на диффузионные процессы, протекающие при термической обработке.  [c.135]

Введение в сталь легирующих элементов улучшает ее механические свойства. Однако наилучшее сочетание свойств легированные конструкционные стали приобретают после упрочняющей термической обработки. В зависимости от условий работы деталей машин (зубчатые колеса, оси и валы, рессоры и пружины, подшипники и др.) сталь должна обладать тем или иным комплексом механических свойств. Различные стали по-разному удовлетворяют этим требованиям, причем для стали одного и того же назначения могут быть использованы разные легирующие элементы. Увеличение содержания легирующих элементов оказывает положительное влияние на свойства конструкционной стали до определенного предела, например, хрома — до 3%, марганца и кремния — до 1,5—2%, никеля — до 5%, молибдена и вольфрама — до 1—2%. При более высоком содержании легирующих элементов положительное влияние легирования на механические свойства стали уменьшается.  [c.169]

Очень часто сильна зависимость температур превращения от механических напряжений, химического состава, термической и механической обработки. Влияние химического состава сплава на значения М и Мк показано на рис. 1.82 и 1.83. Отсюда видно влияние легирующих элементов на скорость закалки, так как достижение более низких температур, требует больших скоростей охлаждения.  [c.123]

Во втором томе Структура сталей описаны микроструктуры стали после термической обработки и характерное влияние легирующих элементов на структуру.  [c.6]

Кинетика распада аустенита, как мы видели в гл. X, определяет поведение стали при термической обработке. Влияние же легирующих элементов на кинетику превращения аустенита очень велико.  [c.355]

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ, ПРОЦЕССЫ ПРЕВРАЩЕНИЯ И ТЕХНОЛОГИЮ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛИ  [c.155]

На сопротивление высокопрочных сталей КР оказывают существенное влияние термическая обработка, в особенности температура отпуска, способ выплавки, пластическая деформация, химический состав. Влияние легирующих элементов на склонность к КР для высокопрочных сталей в основном близко по характеру к рассмотренному выше для аустенитных сталей, хотя и имеет ряд особенностей, отмеченных в работе [11.  [c.73]

Усовершенствованию процессов термической обработки во многом способствовало изучение и разработка рекомендаций использования таких технологических свойств стали, как наследственная зернистость [26—28] и прокаливаемость (последняя непосредственно вытекает из анализа диаграмм изотермического распада аустенита и влияния легирующих элементов на положение кривых распада аустенита). В 1951 г. оба эти свойства получили завершение как в части исследований, так и в практическом их использовании по методам испытаний стали на зернистость и прокаливаемость приняты ГОСТы 5639-51 и 5657-51.  [c.147]

Изучение эрозионной стойкости сталей /170/ показало, что определяющими являются теплофизические характеристики металла, поэтому выбор легирующих элементов или их комбинации необходимо осуществлять с учетом этих свойств, а также исходя из условий абразивной и ударной прочности металлов. Легирующие элементы преимущественно растворяются в основных фазах железоуглеродистых сплавов (феррит, аустенит, цементит), образуя сложные карбиды и другие соединения. Улучшение технических свойств сталей (прочность, износостойкость и т.д.) достигается также с помощью термической обработки, в результате которой происходит перераспределение химических элементов и соединений как внутри кристаллических зерен, так и между ними, что оказывает существенное влияние на энергию межатомных связей. Углерод является одним из основных легирующих элементов, и при увеличении содержания углерода эрозия возрастает по линейному закону, что может быть объяснено уменьшением  [c.173]


Однако для легированных и особенно жаропрочных сталей влияние углерода более сложно, так как их твердость и тем самым обрабатываемость зависит от содержания легирующих элементов, поскольку последние дают карбиды различной твердости. В зависимости от режима термической обработки, т. е. температуры и времени выдержки, изменяется величина зерна твердого раствора, количество выделений упрочняющих фаз и их дисперсность. В этом случае с увеличением содержания углерода может быть замедлен рост зерна и тем самым улучшена обрабатываемость.  [c.328]

Данные для выбора материала. Необходимо руководствоваться данными о химическом составе, механических, технологических и других свойствах материалов, а также о влиянии на эти свойства легирующих элементов, термической и химико-термической обработки.  [c.26]

Влияние легирующих элементов на свойства стали (406). Характеристика и примерное назначение химико-термической обработки (407).  [c.539]

Влияние отпуска прежде всего связано с размером выделений легирующих элементов из твердого раствора. Субмикроскопические выделения, которые имеют место в некоторых сплавах в процессе низкотемпературной термической обработки, приводят не к снятию, а наоборот, к созданию дополнительных напряжений в кристаллической решетке.. Это увеличивает электро- и теплосопротивление.  [c.123]

Таким образом, легирующие элементы, введенные в аустенит-ную сталь и обусловливающие различное упрочнение твердого раствора карбидными или интерметаллидными частицами, как правило, оказывают неблагоприятное влияние на сопротивление термической усталости. Во всех случаях с увеличением количества упрочняющей фазы в структуре материала возрастала и скорость роста термоусталостной трещины.  [c.148]

Легирующие элементы так же, как и примеси, изменяют величину характеристик упругости титана а-стабилизаторы, как правило, повышают модуль нормальной упругости, влияние р-стаби-лизирующих элементов сложнее и зависит от термической обработки. Из данных [18, 105] следует, что алюминий, подобно кислороду, азоту и углероду, повышает модуль нормальной упругости введение 6% (по массе) алюминия повышает модуль нормальной упругости титана на 8—10%. Легирование цирконием и оловом мало, но закономерно снижает модуль нормальной упругости. Ванадий, ниобий, молибден уменьшают модуль нормальной упругости отожженных титановых сплавов. Модуль нормальной упругости р-сплавов с ванадием, ниобием и молибденом находится в пределах примерно от 8 ООО до 10 ООО кгс/мм .  [c.18]

Характер и степень влияния примесей во многом определяются и химическим составом сплава. Добавление легирующего элемента может значительно сокра-ш,ать предел растворимости примесных элементов в а-фазе титана. Кроме того, легируюш,ие элементы, обладающие большей химической активностью, чем титан, могут образовывать с примесями прочное химическое соединение. И в том и в другом случае отмечается весьма существенное понижение пластичности и вязкости сплава. Примером различной чувствительности сплавов разной легированности к воздействию примесей может служить приведенное в табл. 19 изменение величины ударной вязкости сплавов Ti—6А1—1,5V и Ti—6А1—1,5V—5Zr в зависимости от содержания кремния. Влияние качества структуры полуфабриката, определяемой условиями его термопластической деформации и габаритами, было рассмотрено в предыдущих разделах. В соответствии с изложенным при выборе сплава по справочным данным необходимо учитывать, что приведенные значения механических свойств сплава относятся, как правило, лишь к определенному виду полуфабриката после вполне определенной термической обработки. При изготовлении полуфабриката другого типа и других размеров можно получить комплекс свойств, существенно отличающийся от справочных данных.  [c.65]

Свойства зоны легирования зависят от концентрации легирующих элементов и получения фаз различной степени стабильности и дисперсности, образующихся в процессе охлаждения. Строение и состав зоны термического влияния определяются режимом лазерного облучения плотностью мощности излучения, временем его действия, числом импульсов, а также концентрацией легирующих компонентов в обмазке.  [c.133]

Таким образом, результаты проведенных испытаний различл ных групп сталей перлитного класса приводят к выводу, что их эрозионная стойкость определяется содержанием углерода, природой легирующих элементов, их композицией и количеством в стали, а также условиями термической обработки. Кроме того, на эрозионную стойкость стали, особенно на ее чистоту и распределение легирующих элементов, оказывают большое влияние условия выплавки стали. В зависимости от степени влияния этих факторов перлитные стали могут иметь различные абсолютные значения эрозионной стойкости.  [c.189]

Скорость коррозии в кислотах зависит и от состава, и от структуры стали и увеличивается с возрастанием содержания как углерода, так и азота. Степень увеличения зависит главным образом от предшествующей термической обработки (см. разд. 6.2.4), и она больше для нагартованной стали (см. рис. 7.3). Для исследования влияния малых добавок легирующих элементов на коррозию промышленной углеродистой и низколегированных сталей в 0,1 н. H2SO4 при 30 °С были использованы статистические методы [33]. Для изученных сталей скорость коррозии увеличи-  [c.124]

Для изготовления деталей применяют сталь марки 40ХГТР. Расшифруйте состав стали и определите группу стали по назначению. Назначьте режим термической обработки. Приведите механические свойства стали после термической обработки. Объясните влияние легирующих элементов на превращения и свойства стали.  [c.155]


Нельзя согласиться с мнением автора [42] о наличии у сплавов эквикогезивной температуры, выше которой прочность границ зерен меньше прочности самих зерен. Высокотемпературное разрушение по границам зерен наблюдается только при загрязнении их примесями, например свинцом, образцы чистой латуни разрываются по телу зерен (см. рис. 9) при ф= 100 % [43]. Однако у сплавов закономерности усложнены дополнительным влиянием легирования, приводящего к искажению кристаллической решетки, повышению деформационного упрочнения, температуры рекристаллизации и пр. Еще большие изменения происходят при образовании других фаз, появлении способности к закалке и другим видам термической обработки. Существенное влияние оказывает изменение растворимости легирующего элемента с температурой.  [c.177]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]

Полученные результаты показывают, что применяемая в ряде случаев термическая обработка для снятия остаточных сварочных напряжений, связанная с нагревом конструкций до 600—700°С на воздухе и медленным охлаждением, может привести к резкому охрупчиванию ряда сплавов при эксплуатации в агрессивных средах. Чем более легирована а-фаза алюминием, примесями внедрения, цирконием, оловом и другими элементами, тем более интенсивно она распадается при медленном охлаждении и тем большее влияние оказывает газонасыщенный слой на характеристики работоспособности металла при эксплуатации в агрес-рвных средах.  [c.136]

Изучение влияния фазового состава и отдельных легирующих элементов - хрома, воль4рама, ванадия, ниобия, титана, а также совместных добавок Сг и Мо,Сг и /,Сг иМЬ, Сг и V, Сг и Т на водородоустойчивость сталей при температуре до 600 и давлении до 800 атм проводилось, как правило, на опытных плавках. Стали термически обрабатывались по режимам, обеспечивающим наиболее термодинамически устойчивое состояние карбидной фазы при заданных температурах испытания.  [c.153]

Изучали влияние кремния, вольфрама и ванадия (табл. 21) на прокаливаемость, склонность к перегреву, устойчивость против отпуска, технологичность при ковке и термической обработке и предел прочности при изгибе базовой стали 7бХ. В соответствии с вводимым легирующим элементом исследуемые стали разделены на три группы I — хромокремнистые II —хромовольфрамовые III —хромованадиевые. IV группу составляют стандартные стали 9Х и 9Х2СВФ.  [c.80]

Кроме приводимых в технических справочниках обычных характеристик материалов, необходимых конструкторам при их выборе, а также технологам-машино-строителям при проектировании технологических процессов (химический состав и основные значения механических и физико-химических свойств), в настоящем томе приведены также сведения об основных особенностях, определяющих поведение металлов при пластической деформации и термической обработке, об изменении структуры под влиянием различных факторов, о влиянии легирующих элементов и условий зксплоатации на прочность и т. п. Следует указать, что все эти данные приобретают особое значение на фоне современного развития машиностроения и повышенных требований, предъявляемых в настоящее время к производственному и особенно к энергетическому оборудованию.  [c.448]

Данные, характеризующие влияние легирующих элементов на твёрдость в зоне термического влияния, приведены в табл. 173. (Fren h и Armstrong).  [c.427]

В работе [23а] исследовано влияние содержания легирующих элементов на жаропрочные свойства сплавов системы Мо—Ti (сплав (1 1,76% Ti —0,42%С сплав II 4,2% Ti —0,95%С). Увеличение содержания легирующих элементов, сопровождающееся ростом количества упрочняющей фазы, приводит к повышению прочности сплавов. Так, значение предела прочности и текучести сплава II на 15—207о выше, чем сплава I, при температуре до 1000°С. Относительное сужение, характеризующее наибольшую пластичность металла при разрыве, напротив, выше у сплава I (рис. 3.18). Повышение температуры испытания приводит, во-первых, к снижению прочностных и росту пластических характеристик сплавов и, во-вторых, к нивелировке различия прочности сплавов с разным содержанием легирующих элементов —при температуре испытания 1400°С пределы прочности и текучести обоих сплавов практически одинаковы. Это, по-видимому, связано с термической нестабильностью сплавов в деформированном состоянии. Для проверки этого предположения были проведены испытания механических свойств сплавов в термически более стабильном литом состоянии с дополнительной  [c.67]

Некоторые легирующие элементы стабилизируют аустенит, другие — феррит, поэтому добавки таких стабилизаторов аусте-нита, как никель и марганец, должны способствовать сохранению аустенитной матрицы (см. рис. 7.5). Простейшая аустенитная сталь AISI 316 содержит молибден, который, будучи растворен в аустените, способствует увеличению предела ползучести. Пределы ползучести и прочности таких сталей сильно зависят от температуры и времени. Кроме того, в них не наблюдаются реакции, сопровождающиеся выделением других фаз и нежелательным изменением структуры и свойств зон термического влияния сварки.  [c.60]

Легирующие элементы, такие как молибден, ванадий, хром, вольфрам, никель, титан и др., оказывают большое влияние на свойства гталей и чугунов. Стали с перечисленными компонентами, прошедшие гпециальную термическую обработку, очень широко применяют в паро-турбостроении.  [c.6]

Общее представление о влиянии химического состава или со держания легирующих элементов на характеристики сопротив ления термической усталости ау тенитных сталей можно полу чить при сравнении расчетных коэффициентов степенных урав нений долговечности. Для сталей аустенитного класса сохраняется общая закономерность зависимости сопротивления термической усталости от соотношения прочностных и пластических свойств при кратковременном разрыве. Приведем некоторые примеры.  [c.143]

В ЦНИИТМАШе исследовали влияние легирующих элементов на распространение трещин термической усталости в аустенитных сталях. Испытания на термическую усталость образцов с концентраторами проводили при температуре цикла 650—20° С, охлаждении в воде, времени выдержки при 650° С, равном 12 и 30 мин. Длину трещин измеряли после 50, 250, 350, 500, 750 и 1000 циклов. С целью изучения влияния размера зерна на развитие трещин испытывали сталь 12Х18Н10Т одной плавки с размером зерна 10—11 и 5—6 баллов.  [c.145]

Влияние легирующих элементов на свойства стали. В изделиях крупных сечений (диаметром свыше 15—20 мм) механические свойства легированных сталей (Ов, ао,а, б, ф, КСи) значительно выше, чем механические свойства углеродистых сталей. Особенно сильно повышаются предел текучести, относительное сужение и ударная вязкость. Это объясняется тем, что легированные стали обладают меньшей критической скоростью закалки, а следовательно, лучшей прокаливаемЬстью. Кроме того, после термической обработки они имеют более мелкое зерно и более дисперсные структуры. Благодаря большей прокаливаемости и меньшей критической скорости закалки замена углеродистой стали легированной позволяет проводить закалку деталей в менее резких охладителях (масле, воздухе), что уменьшает деформацию изделий и опасность образования трещин. Легированные стали применяют поэ-  [c.259]



Смотреть страницы где упоминается термин ТЕРМИЧЕСКАЯ Элементы легирующие — Влияние : [c.40]    [c.60]    [c.364]    [c.83]    [c.204]    [c.177]    [c.217]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



Влияние легирующее

Влияние легирующих элементов на превращения в стали и технологию термической обработки

Влияние легирующих элементов на различные свойства стали при термической обработке

Влияние легирующих элементов на структуру, процессы превращения и технологию термической обработки стали

Влияние легирующих элементов на термическую обработку

Легирующие элементы

ТЕРМИЧЕСКАЯ ОБРАБОТКА Влияние легирующих элементо

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте