Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Включения неметаллические

ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ НЕМЕТАЛЛИЧЕСКИХ ВКЛЮЧЕНИЙ В УГЛЕРОДИСТЫХ СТАЛЯХ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ  [c.134]

Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]


Конструкционные качественные углеродистые стали получают в основных конверторах, в мартеновских п электрических печах. При выплавке этих сталей более строго контролируют состав шихты, содержание углерода, серы, фосфора, неметаллических включений и т. д.  [c.142]

В бессемеровском конвертере путем продувки жидкого чугуна воздухом получают углеродистую сталь с содержанием углерода до 0,5% и главным образом — малоуглеродистую. Бессемеровская сталь содержит больше растворенных газов и неметаллических включений, чем мартеновская. Бессемеровскую сталь применяют для производства сварных труб неответственного назначения, прокатных профилей, тонкого листа.  [c.43]

Кремний. В углеродистой стали пределы содержания S1 определяются необходимостью обеспечения хорошей степени раскисления. При Si >0,4—0,5% повышается прокаливаемость стали. Сталь с Si > > 0,5% может рассматриваться как легированная. Повышение содержания Si в кремнистых сталях имеет следствием увеличение объема усадочных раковин. Стали с повышенным содержанием Si характеризуются склонностью к образованию в отливках термических напряжений, трещин, газовых раковин и неметаллических включений.  [c.29]

Инструментальная углеродистая сталь разделяется на два класса качественную и высококачественную. Высококачественная сталь обозначается буквой А, добавляемой к марке стали. Такая сталь характеризуется меньшим содержанием серы, фосфора и неметаллических включений, а также более суженными пределами содержания кремния и марганца по сравнению с качественными сталями.  [c.192]

Рис. 6. Количество неметаллических включений (а) и сульфидов (б) в зависимости от скорости затвердевания отливок и слитков углеродистой стали [10] Рис. 6. Количество <a href="/info/63878">неметаллических включений</a> (а) и сульфидов (б) в зависимости от <a href="/info/336153">скорости затвердевания</a> отливок и слитков углеродистой стали [10]
Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]


Углеродистые стали, содержащие менее 0,25 % углерода, отличаются хорошей свариваемостью. Отрицательное влияние па свариваемость таких сталей могут оказывать газы и неметаллические включения, количество которых в металле зависит от способа его производства. Сталь повышенного качества сваривается лучше, чем сталь обычного качества, сталь спокойная лучше, чем кипящая.  [c.293]

Углеродистые стали общего назначения (ГОСТ 380—71) производят в виде разнообразной горячекатанной продукции — листов, балок, прутков, труб, швеллеров, а также в виде кованых и литых заготовок, в том числе полученных на машинах непрерывного литья заготовок. Как наиболее дешевые эти стали выплавляют по нормам массовой технологии и в них допускается наиболее высокое содержание вредных примесей, повышенная загрязненность неметаллическими включениями и сравнительно высокое содержание газов — азота и водорода. Стальной лист представляет собой особенно ценный для машиностроения вид продукции сталеплавильных заводов. Качество листа из углеродистой стали общего назначения и качественной конструкционной стали регламентируется ГОСТ 16523—70. На поверхности листов не допускаются металлургические дефекты (закаты, плены, вкатанная окалина и т. д.).  [c.353]

Получаемая в промышленности углеродистая сталь имеет довольно сложный химический состав. Содержание железа в ней может быть в пределах 97,0—99,5% и попадает некоторое количество элементов, связанное с технологией производства (марганец, кремний) или невозможностью полного их удаления из состава металла (сера, фосфор, кислород, азот, водород), случайные примеси (хром, никель, медь) и, кроме того, некоторые неметаллические включения.  [c.78]

Как видно из рис. 4.7, при большем содержании углерода а теряет стабильность из-за хрупкого разрушения стали. В этих сталях может быть достаточно высокое содержание вредных примесей, а также газонасыщенность и загрязненность неметаллическими включениями, так как их выплавляют по массовым технологиям. Эти стали относятся к дешевым материалам, но при этом в них сочетаются неплохие механические свойства с хорошей обрабатываемостью резанием и давлением, в чем они превосходят даже легированные стали (при одинаковом содержании углерода). Углеродистые стали, в  [c.81]

Углеродистые стали, содержащие менее 0,25 % углерода, отличаются хорошей свариваемостью. Отрицательное влияние на свариваемость таких сталей могут оказывать газы и неметаллические включения, количество которых в металле зависит от способа его производства. Сталь качественная  [c.333]

В углеродистых сталях обыкновенного качества допускается повышенное содержание вредны х примесей, а также газонасыщенность и загрязненность неметаллическими включениями, так как из выплавляют по нормам массовой технологии. Эти стали преимущественно используют в строительстве как наиболее дешевые, технологичные и обладающие прочностью, достаточной для изготовления металлоконструкций различного назначения.  [c.244]

Загрязненность котельных сталей неметаллическими включениями по среднему арифметическому баллу не должна превышать для углеродистых и легированных котельных сталей по сульфидам —  [c.61]

Углеродистые инструментальные стали (табл. 78) подразделяются на качественные и высококачественные (в них меньше серы, фосфора, остаточных примесей И неметаллических включений).  [c.163]

Для работы в условиях микроударного воздействия следует применять спокойные стали, которые хорошо раскислены и благодаря этому имеют меньшую газонасыщенность. В сталях обыкновенного качества значительно развита ликвация кроме того, в этих сталях обычно не регламентируется максимально допускаемое количество неметаллических включений и остатков продуктов раскисления стали. Скопление этих примесей отрицательно сказывается на эрозионной стойкости стали. Поэтому для работы в условиях гидроэрозии целесообразно применять качественные углеродистые стали. Для получения сравнительных данных по эрозионной стойкости этих сталей были проведены испытания одинаковых по химическому составу обыкновенной и качественной углеродистых сталей. Ниже указано содержание элементов (%) сталей Ст4 и 35.  [c.128]

Согласно данным химического анализа, сварной секторный отвод изготовлен из стали 10 (ГОСТ 1050-88). Механические свойства сварного соединения удовлетворяют требованиям РД 38.13.004-86. Загрязненность металла неметаллическими включениями соответствует баллам 2-3 шкалы ГОСТ 1778-70, что допустимо при выплавке углеродистой стали.  [c.262]


При травлении в течение 10—25 сек реактив хорошо выявляет зерна с различной ориентацией, двойники линии деформации, карбиды, ликвационную неоднородность. Лучше всего травятся границы феррита в малоуглеродистых сталях, зерна аустенита, мартенсита, карбиды в закаленных высокоуглеродистых сталях. В углеродистой и низколегированной сталях выявляются неметаллические включения и ликвация фосфора. В чугунах травятся цементит и фосфидная эвтектика [105. В течение 2 мин выявляется структура кобальта, при этом его окислы и сульфиды не окрашиваются [139].  [c.55]

Буквы и цифры в обозначении марок стали означают У — углеродистая, следующие за ней цифры — среднее содержание углерода (в десятых долях процента), буква Г — сталь с повышенным содержанием марганца. Буквой А обозначаются высококачественные стали — более чистые, чем качественные, по содержанию серы, фосфора и остальных примесей, а также по неметаллическим включениям и с более суженными пределами содержания марганца и кремния.  [c.61]

Атомарный водород, имеющий малый диаметр, проникая в металл по границам раздела фаз и несплошностям, скапливается в порах ферритной матрицы. Дальнейшее накопление водорода приводит к его молизации, сопровождающейся возникновением повышенного давления в порах. На процесс диффузии водорода влияют поле напряжений, градиент температуры и дефектность строения металла. При неблагоприятном сочетании этих факторов в металле происходит сероводородное растрескивание и расслоение, которое может возникать внутри конструкции вдалеке от ее поверхности. Склонность к сероводородному растрескиванию под напряжением (СРН) определяется особенностями структуры металла наличием структурных неоднородностей, количеством и распределением неметаллических включений, химическим составом. СРН более характерно для высокопрочных сталей аустенитного и аустенитно-мартенситного классов и возникает чаще всего в зонах термического влияния сварных швов. Сероводородному расслоению подвергаются, как правило, сосуды, аппараты и трубопроводы из углеродистых и низколегированных сталей в отдельных случаях может происходить СРН сварных соединений.  [c.188]

Примечания. Марка без буквы Л означает качественную сталь с буквой А — высококачественную сталь — более чистую по содержанию 3, Р и остаточных П1тимесей, а также по неметаллическим включениям, с меньшим содержанием Мп и 31 буква У означает углеродистая следующие за ней цифры — среднее содержание С (в десятых долях %) буква Г — с повышенным содержанием Мп.  [c.235]

При коррозионной усталости трещины возникают по месту небольших язв, формирующихся у неметаллических включений на стойких полосах скольжения. Эти язвы появляются в результате локальной коррозии и со временем углубляются, некоторые из них перерождаются в трещины. По мере периодического нагружения углеродистых и низколегированных сталей в коррозионных средах происходит сдвиг значения электродного потен-вдала металла в отрицательную сторону [72]. Такое явление частично, на наш взгляд, обусловлено включением в общую поверхность металла также и поверхностей трещин, стенки которых имеют более отрицательное значение потенциала, поскольку активированы отрывом в момент механических скачков трещины.  [c.53]

Было несколько интересных работ по сталям. В одной из них утверждалось, что уменьшение размера зерна понижает Kth [S79] предшествующие данные всегда демонстрировали обратное. Однако приведенный в качестве подтверждения рис. 5 в работе [379] не является убедительным. Были бы полезными дополнительные исследования влияния размера зерна в сталях с различными уровнями прочности, особенно, учитывая, что имеются и данные, показывающие что уменьщеиие размера зерна повышает Kth, если содержание примесей в стали доведено до очень низкого уровня. Исследование КР сталей типа 4340 [381] также показало, что главную роль играет водород. Исследование, выполненное на нелегированных углеродистых сталях меньшей прочности (около 700 МПа) с различным содержанием Мп [382], обнаружило, что концентрация Мп не влияет на индуцированную водородом потерю пластичности, но зато определяет склонность к КР в случае перлитной микроструктуры. В то же время в случае микроструктур со сфероидальным графитом стойкость к КР не ухудшается заметным образом с увеличением содержания Мп [382]. Таким образом, в отличие от некоторых утверждений [383], микроструктура материала влияет на поведение Мп при уровнях прочности ниже 690 МПа. В то же время уместно вновь напомнить о преобладающей важности неметаллических включений [383, Э84] в процессах водородного разрушения. Наконец, не будет преувеличением заметить, что попытки оценить результаты термомеханической обработки и микроструктурные эффекты, не контролируя уровень прочности или скорость охлаждения пос.те термообработки [385], не могут дать осмысленных результатов, особенно при отсутствии как микрострук-турной, так и фрактографической информации. Как уже обсуждалось в тексте, в тщательно выполненных исследованиях термомеханическая обработка дает обнадеживающие результаты для высокопрочных сталей [386].  [c.148]

Особенно велика разница в свойствах стали в продольном и поперечном направлениях с вoзpa тaниe . количества неметаллических включений. Увеличение количества включений в конструкционной углеродистой стали всего на один балл снижает поперечное сжатие на 10%. Анизотропия свойств кованой стали является следствием вытянутости неметаллических включений и структурной полосчатости, обусловленной дендритной ликвацией литой стали.  [c.57]

Сталь обыкновенного качества — углеродистая сталь с содержанием углерода обычно не более 0,6%. Её плавят в больших мартеновских печах, бессемеровских и томассовских конверторах. Эта сталь имеет повышенное содержание серы и фосфора (мартеновская 0,05—0,06 % 8 и 0,05—0,07 % Р бессемеровская и томассовская в,06—0,07 % 8 и 0,08— 0,09 % Р) и неметаллических включений.  [c.365]


Сталь качественная — углеродистая или легированная — выплавляется в мертеновских печах с соблюдением более строгого технологического режима. Содержит не более 0,04 % 8 и 0,05 % Р й меньшее количество неметаллических включений, чем сталь обыкновенного качества.  [c.365]

Т5К12 —для тяжелого чернового точения стальных иоковок, штамповок и отливок по корко с раковинами при наличии песка, шлака и различных неметаллических включении, ири неравномерном сечении среза и наличии ударов, для всех видов строгания углеродистых и легированных сталей, сверления отверстий в стали  [c.206]

Тяжелое черновое точение стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включений, при неравномерном сечении среза и наличии ударов. Работа на изношенном оборудовании, а также обработка колесных пар с сильно наторможенными участками. Все пиды строгания углеродистых и легированных сталей. Сверление отверстий пз стали. Обработка ста.льных деталей на многорезцовых станках, полуавтоматах и автоматах при низких скоростях резания  [c.105]

В котельных сталях, являющихся многокомпонентными системами, легирующие элементы находятся в свободном состоянии, в форме интерметаллических соединений с железом илн между собой в виде оксидов, сульфидов и других неметаллических включений, в карбидной фазе, в виде раствора в цементите или самостоятельных соединений с углеродом. Молибден, хром, ванадий растворяются в основных фазах углеродистых сплавов - феррите, аустените, цементите или образуют специальные карбиды. При этом твердость и ударная вязкость феррита возрастают. В процессе эксплуатации происходит интенсивный переход молибдене и хрома из твердого раствора феррита в карбиды. Наибольшая интенсивность перехода молибдена наблюдается при наработках немногим более 2 10 ч. Далее процесс сглаживается. В исходном состоянии в малолегированных сталях содержится от 3 до 8 молибдена. После наработки около 1,5 10 ч его сод жание возрастает до 80%. Разброс значений содержания молибдена по отдельным трубам существенно увеличивается с наработкой времени. Соответственно происходит разупроч-ненне.  [c.154]

В работе [79, с. 176—178] показано, что расход алюминия в виде ферроалюминия при раскислении стали уменьшен в 2,5 раза. При использовании сплава ФЛМнС уменьшился расход углеродистого ферромарганца в два раза, а расход алюминия и ферросилиция — на 20%. Снижение затрат при использовании комплексных сплавов сопровождается улучшением качества металла. По данным А. В. Маринина при раскислении стали ферроалюминием ( 60 % А1) увеличивается ударная вязкость, особенно при отрицательных температурах, возрастает выход толстого листа высшего качества. Э. Н. Михайлов показал, что применение сплава Мп—AI (51 % Мп, 12,4% AI и 2,7% Si, 2% Си ост. Fe) для раскисления конструкционной кислородно-конвертерной стали в ковше более эффективно, чем раздельное введение в металл марганца и алюминия. При раскислении сплавом Мп—А1 улучшается макроструктура металла, уменьшается его загрязненность неметаллическими включениями и повышаются механические свойства. Выбор сырья и способа производства алюминосодержащих сплавов должен в каждом отдельном случае определяться экономическим расчетом для конкретных условий.  [c.106]

Подтверждением такого механизма процесса является четкая зависимость скорости обезуглероживания от измельчения реагентов и практическое отсутствие такой зависимости от давления прессования брикетов, т. е. от степени контакта окислителя с карбидом. Однако в заключительной стадии процесса при очень малых значениях рсо и Рсо, кинетические возможности его настолько ограничены, что дальнейшее течение процесса может осуществляться лишь при непосредственном взаимодействии оксида и углерода, т. е. скорость обезуглероживания на последней стадии зависит лишь от скорости диффузии реагентов. Вследствие очень малых скоростей диффузионных процессов взаимодействие углерода с окислителем практически прекращается еще до достижения равновесия, поэтому для получения сплава с заданным содержанием углерода (<0,02 %) необходимо вводить в брикет до 2 % избыточных оксидов, что неизбежно вызывает загрязнение феррохрома неметаллическими включениями. Загрязненность получаемого феррохрома в значительной степени зависит от рода применяемого окислителя. При использовании руд или концентратов сплав будет загрязняться как избытком восстановителя, так и оксидами пустой породы (MgO, AI2O3, СаО и др.), которые в условиях процесса не могут восстанавливаться. При использовании кремнезема образуются силициды хрома и содержание кремния в сплаве повышается до 5—8 %, что недопустимо при выплавке сталей многих марок, хотя за рубежом такой феррохром и производится в значительных количествах. Ввиду высокой стоимости не нашли широкого применения оксиды никеля и хрома. Кроме того, использование оксида никеля суживает область применения сплава только выплавкой хромоникелевых сталей. Трудности были устранены в результате использования окисленного углеродистого феррохрома.  [c.243]

На прокаливаемость оказывают влияние не только скорость охлаждения, но и однородность структуры, температура нагрева, исходная структура и химический состав стали. Заметно повышают прокаливаемость марганец, хром и молибден, меньше влияют ликель и кремний. При одновременном введении в сталь нескольких легирующих элементов их влияние может усиливаться. Более высокая прокаливаемость легированных сталей по сравнению с углеродистыми объясняется большей устойчивостью переохлажденного аустенита и, соответственно, меньшей критической скоростью охлаждения. С увеличением скорости охлаждения прокаливаемость сталей увеличивается. При наличии неоднородности структуры прокаливаемость снижается, так как нерастворившиеся карбиды и неметаллические включения являются центрами кристаллизации, облегчающими образование перлита.  [c.58]

Скрытые примеси — кислород, азот, водород — находятся в стали либо в виде твердого раствора в феррите, либо образуют химические соединения (нитриды, оксиды), либо присутствуют в свободном состоянии в порах металла. Кислород и азот мало растворимы в феррите. Они загрязняют углеродистую сталь хрупкими неметаллическими включениями, способствуя снижению вязкости и пластичности стали. Водород находится в твердом растворе и особенно с1Шьно охрупчивает сталь. Повышенное содержание водорода, особенно в хромистых и хромо-никелевьЕс сталях, приводит к образованию внутренних трещин — флокенов.  [c.277]

При определении механиче-ких свойств при комнатной и рабочей температурах должно быть испытано не менее двух образцов на растяжение и трех на ударную вязкость для каждой температуры. Микроструктуру исследуют не менее чем на двух микрошлифах в поперечном и продольном направлениях. После исследования шлифов проводят фотографирование наиболее типичных участков при 100-кратном увеличении — снимок для определения обш его характера структуры и снимок внутреннего края трубы для оценки степени обезуглероживания внутренней поверхности трубы при 500- и 1000-кратном увеличении — снимок для определения строения структурных составляющих. Балльность оценивают по неметаллическим включениям. Определяют степень сфероидизации перлита (для углеродистых, молибденовых и хромомолибденовых сталей), графитиза-ции (для углеродистых и молибденовых сталей) и сравнивают структуры со шкалой структур, рекомендуемых для данной марки стали  [c.222]



Смотреть страницы где упоминается термин Углеродистая Включения неметаллические : [c.416]    [c.185]    [c.56]    [c.142]    [c.212]    [c.129]    [c.152]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.23 , c.57 ]



ПОИСК



Включения

Р углеродистое

Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте