Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показатели скорости коррозии металлов

Ко — показатель скорости коррозии металла в электролите без защиты в гЦм -ч)-,  [c.300]

К — показатель скорости коррозии металла в том же электролите при применении защиты в г м -ч)  [c.300]

Ki - показатель скорости коррозии металла без катодной защиты К] - то же, при катодной защите  [c.69]

Ki - показатель скорости коррозии металла без катодной защиты  [c.194]

Показатели скорости коррозии металлов  [c.48]

Таблица 6.4. Показатели скорости коррозии металла элементов системы с повышенным подогревом воды при дозировке еО мг/кг силиката натрия Таблица 6.4. Показатели скорости коррозии металла элементов системы с повышенным подогревом воды при дозировке еО мг/кг силиката натрия

Для сравнения коррозионной стойкости металлов пользуются различными методами оценки. Одним из наиболее распространенных является метод оценки потери металла с единицы поверхности. Так, применяется десятибалльная шкала оценки общей коррозионной стойкости, где имеются группы стойкости и количественные показатели скорости коррозии металла в мм/год. Например, металл является стойким при скорости коррозии 0,01...0,1 мм/год и малостойким или нестойким при скорости коррозии 5... 10 мм/год и более 10 мм/год.  [c.7]

Для количественного выражения скорости коррозии металлов приняты показатели коррозии глубинный, изменения массы, объемный, механический и другие, которые являются средней скоростью процесса за время т, т. е.  [c.40]

Скорость электрохимической коррозии металлов можно выразить через плотность коррозионного тока или токовый показатель скорости коррозии  [c.266]

Скорость коррозии металла, выраженная количественно с помощью одного из приведенных выше количественных показателей, является средней скоростью за время т. Истинная скорость коррозии металла в момент времени т может быть определена графическим дифференцированием по тангенсу угла наклона касательной к кривой коррозия—время (рис. 313).  [c.429]

Глубинный показатель коррозии, которым выражается в десятибалльной шкале скорость коррозии металлов, измеряется непосредственно или в случае равномерной коррозии получается пересчетом показателя убыли массы Кт по формуле (65).  [c.430]

Кинетику коррозии металлов с водородной или кислородной деполяризацией можно исследовать непрерывно при помощи объемных показателей, применяя для этого объемные методы. На рис. 335 приведен общий вид установки для определения скорости коррозии металлов с водородной деполяризацией по объему выделяющегося водорода. Заполнение бюреток в начале опыта и при их периодической перезарядке в процессе испытания осуществляется засасыванием коррозионного раствора с помощью водоструйного насоса.  [c.448]

Определение скорости коррозии металла (по какому-либо показателю коррозии убыли массы образца, водородному, изменению концентрации ионов металла в растворе и др.) при разных постоянных значениях его потенциала, поддерживаемых с помощью потенциостата, позволяют получить кривые скорость коррозии — потенциал, дающие наиболее исчерпывающую характеристику коррозионного поведения системы металл—электролит (рис. 347).  [c.458]


Увеличение концентрации кислых или основных солей ведет к подкислению или подщелачиванию раствора и скорость коррозии металлов определяется, как это было показано выше, зна-чение.м водородного показателя среды pH.  [c.74]

В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах.  [c.6]

Этот показатель удобен для сравнения скорости коррозии металлов с различными плотностями.  [c.79]

Для расчета скорости коррозии по убыли массы образец металла взвешивают до погружения в рабочую среду котла - консервирующий раствор, котельную воду и т. д. После проведения эксперимента продукты коррозии удаляют с поверхности металла неабразивным материалом, а при коррозионных исследованиях образцов с защитными пленками - сильной струей воды, после чего образцы вновь высушивают без доступа воздуха или протирают насухо фильтровальной бумагой. Затем образцы вновь высушивают. Показатель скорости коррозии К, г/(м ч), рассчитываются по уравнению  [c.116]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

В настоящее время очень трудно создать изделие, все детали которого были бы изготовлены из одного материала. А контактирование деталей из разнородных металлов или их соединение электропроводящими путями (металлическим проводом, электролитом, водой, конденсатом) приводит к разрушению одной из деталей в результате контактной коррозии. Поэтому при конструировании необходимо учитывать следующие количественные показатели скорости коррозии анода применительно к типичным атмосферам и парам 0—50 г/(м -год)—абсолютно допустимые контакты 50 —150 г/(м2-год)—условно допустимые выше 150 г/(м2-год)—недопустимые. При условно допустимых контактах необхо-  [c.73]

При температурах ниже 348° С скорость коррозии алюминия замедляется [111,172 111,175], при 268° С она возрастет с увеличением времени испытания. Зависимость скорости коррозии алюминиевого сплава с концентрацией 0,48% железа и 1,02% никеля в воде при 350° С от времени в логарифмических координатах выражается прямой линией. Аналогичная параболическая зависимость наблюдается у сплава с концентрацией 0,86% железа и 1,3% никеля при температуре 363° С [111,175 111,176]. После 1300 час испытаний параболическая зависимость переходит в линейную, и скорость коррозии металла при этом резко возрастает. Параболический участок временной зависимости может быть отождествлен с индукционным периодом коррозии, предшествующим периоду быстрого разрушения. При окислении на воздухе до температуры 450° С также имеет место параболическая зависимость, переходящая в линейную при увеличении температуры, У значительной группы сплавов сохраняется одинаковый показатель параболы.  [c.181]


В оборудовании электростанции может иметь место язвенная или равномерная коррозия. Обычно оценка стойкости металлов производится по глубинному показателю скорости коррозии и определяется по десятибалльной шкале. Стойкими металлами считаются такие, при которых скорость коррозии составляет 0,01—0,1 мм/год. Допустимая скорость язвенной коррозии для труб парогенератора высокого давления составляет 0,2—0,25 мм/год, а для равномерной коррозии 0,08— 0,12 мм/год.  [c.69]

Указанные показатели коррозии могут быть использованы для оценки скорости коррозии металлов только при равномерном характере коррозии. Для оценки локальной коррозии используют особые показатели. Например, точечную коррозию можно количественно характеризовать по максимальной глубине проникновения питтингов, определяемой любыми, например оптическими, методами. Степень межкристаллитной коррозии можно оценить по относительному изменению механических (прочностных) или физических (электропроводность) характеристик металла за определенное время.  [c.192]

Скорость коррозии металлов в электролите зависит от состава электролита, его температуры, доступа к нему воздуха и от многих других факторов. Влияние некоторых из них весьма сущ ественно. Один из наиболее значительных факторов — это активность ионов водорода в растворе, обычно выражаемая показателем pH.  [c.103]

Одним из основных показателей, определяющих надежность (ресурс) оборудования в условиях коррозионного воздействия сред, является скорость коррозии. Оценка ресурса оборудования в коррозионных средах фактически сводится к определению скорости коррозии металла, из которого оно изготовлено, и расчету срока службы путем деления толщины стенки на скорость коррозии. Такой подход позволяет правильно прогнозировать ресурс оборудования при равномерной (общей, сплошной) коррозии его элементов. Однако равномерная коррозия наблюдается примерно в 1/3 всех случаев причин выхода оборудова-  [c.19]

В табл. 3 исследуемый основной металл помещен в первой графе, а сопрягаемый с ним металл — во второй в последующих графах приведены цифровые показатели скорости коррозии исследуемого металла (в контакте с другим металлом) в растворах различных солей.  [c.339]

Скорость коррозий металлов оценивают количественно по убыли массы единицы поверхности металла в еди- ницу времени —весовой показатель скорости коррозии  [c.48]

Из всего многообразия внешних факторов одним из важных представляется водородный показатель раствора электролита (pH). Равновесные потенциалы водородного и кислородного электродов, как было уже показано ранее, являются функцией pH, поэтому процессы водородной и кислородной деполяризации в известной степени от него зависят. Кроме того, pH определяет поведение продуктов коррозии на металле. Типичные зависимости скорости коррозии металлов (К) от pH приведены на рис. 1-19.  [c.44]

Скорость коррозии металлов в растворах электролитов в значительной степени зависит от характера раствора и протекает по-разному в кислых, щелочных и нейтральных растворах. Характер раствора молгно определить по активности в нем водородных ионов. Вода только в незначительной степени диссоциирована на ионы водорода Н+ и ноны гидроксила ОН . Произведение активностей ионов водорода и ионов гидроксила для воды и водных растворов есть величина постоянная, равная примерно Ю " при 25° С. Активность ионов Н+ в растворе молгно охарактеризовать водородным показателем pH, представляющим собой логарифм актпвпости ионов Н+, взятый с обратным знаком  [c.11]

Кмасс — массовый показатель скорости коррозии в г1(м -ч)-, у — плотность металла.  [c.338]

Коррозионный ток пары на единицу площади анода (fa=l) будет тем больше, чем больше начальная разность стационарных потенциалов контактируе-ыых металлов в данной среде, чем меньше поляризуемость электродов и омическое сопротивление коррозионной пары и чем больше площадь катода. Таким образом, могут быть очень опасные контакты, приводящие к быстрой коррозии анода, и менее опасные, где ускорение коррозии анода будет не очень существенным. Допустимость того или иного контакта может быть определена количественным показателем скорости коррозии анода так, абсолютно допустимы контакты при скорости коррозии анода до 50 г/(м -год), условно допустимыми контакты считаются при скорости коррозии от 50 до 150 г/(м2 год) и недопустимы контакты при скорости коррозии анода более 150 г/(м2-год).  [c.7]

Массометрический показатель скорости коррозии — это изменение массы металла в результате коррозии, отнесенное к единице его поверхности, в единицу времени, и вычисляется по формуле  [c.79]

Глубинный показатель скорости коррозии учитывает уменьшение толщины металла вследствие коррозии, выраженное в линейных единицах и отнесенное к -единице времени. Среднее значение глубины коррозионного поражения при рав-яомерной коррозии можно вычислить с помощью массометрического показателя скорости коррозии Кт -  [c.79]

Довольно широкое распространение получил метод определения скорости коррозии металла котлов в стендовых условиях по поляризационному сопротивлению. Принципы, теоретические основы и практическое осуществление метода были подробно рассмотрены в 4.1. Так же как и в стояночных и эксплуатационных режимах, в стендовых условиях коррозионный контроль металла котлов может осуществляться приборами типа Антикор , позволяющими определять поляризационное сопротивление, пересчитывать его значение на показатель скорости коррозии, определять кинетику коррозионного процесса и т. д.  [c.143]

Многолетние наблюдения показывают, что через каждые 15—20 лет метеорологические показатели меняются и не являются определяющими для данной местности, что вызвано движением воздушных масс южных и восточных румбов, доминирующих над западными и юго-западными. Ввиду их высокой влагопоглотительной способности происходит некоторое высушивание воздуха, вследствие чего относительная влажность падает иногда до 33—34%. В этот период времени значительно меняются метеорологические параметры падает относительная влажность воздуха, увеличивается продолжительность солнечного сияния, повышается среднемесячная максимальная и минимальная температура воздуха и уменьшается количество осадков. Все эти факторы, вместе взятые, вызывают значительное торможение скорости коррозии металлов, что необходимо учитывать при анализе результатов испытаний.  [c.30]


Состав атмосферы. Значительное увеличение скорости коррозии многих металлов наблюдается в промышленных и приморских районах, что связано с содержанием в воздухе SO2 и Na l. В атмосфере на поверхности металлов образуются слабо минерализованные пленки воды коррозионный процесс протекает так же, как в нейтральных электролитах, лишь с теми особенностями, которые присущи электрохимическим процессам, протекающим в тонких слоях электролита [3]. К этим особенностям в первую очередь относится увеличение скорости катодного процеса за счет способности тонких пленок электролита к саморазмешиванию, усиливающемуся при испарении. В естественных условиях такое размешивание происходит при высыхании вследствие испарения, например, при уменьшении влажности воздуха, повышении температуры и т. п. Скорость анодных процессов в тонких слоях электролитов замедляется, что объясняется увеличением подвода кислорода к металлу, а это в свою очередь обусловливает пассивацию, накопление продуктов коррозии в пленках электролита. Можно было предполагать, что замедление анодного процесса приведет к уменьшению скорости коррозии металлов в атмосферных условиях по сравнению с тем же показателем при протекании процесса при погружении в электролит. Однако это не происходит из-за значительных скоростей катодного процесса. Следовательно, в атмосферных условиях в видимых пленках электролитов коррозия протекает с катодно-анодным ограничением. Роль омического фактора несущественна при коррозии в пленках электролита толщиной 100—200 мкм.  [c.35]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]

Одним из существенных источников попадания окислов железа в пароводяной тракт энергетических установок является коррозия поверхности металла во время простоя оборудования под воздействием влаги и кислорода воздуха, так называемая стояночная коррозия. Согласно данным ВТИ скорость стоялочной коррозии котельной стали можно оценить значением 0,05 г/(м -ч). В тех случаях, когда на поверхности металла могут оставаться растворы со сравнительно высокой концентрацией хлоридов, сульфатов и других активирующих ионов, скорость коррозии металла может быть еще выще. Протекание стояночной коррозии вызывает необходимость более частого проведения эксплуатационных химических очисток, а также увеличивает продолжительность водных дромывок перед пуском блока. Все это значительно ухудшает экономические показатели работы электрических станций. Следует также учесть, что стояночная коррозия вызывает усиление процесса разъедания металла, происходящего во время работы оборудования.  [c.172]


Глубинный показатель скорости коррозии (в мм/год) принят для оценки коррозионной стойкости металлов по десятибальной шкале ГОСТ 13819—68.  [c.49]


Смотреть страницы где упоминается термин Показатели скорости коррозии металлов : [c.191]    [c.188]    [c.345]    [c.345]    [c.144]    [c.45]    [c.181]    [c.49]    [c.510]    [c.47]   
Смотреть главы в:

Коррозионная стойкость материалов  -> Показатели скорости коррозии металлов



ПОИСК



Коррозия металлов

Коррозия показатели

Коррозия скорости

Показатели коррозии металлов

Показатели скорости коррозии



© 2025 Mash-xxl.info Реклама на сайте