Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автоматизация процессов измерения и контроля

В 6-м издании значительно шире изложены общие вопросы технических измерений, принципы создания средств измерений и контроля, а также автоматизации процессов измерения и контроля. Рассмотрены новейшие средства измерений высокой точности и производительности методы расчета посадок и размерных цепей с применением ЭВМ.  [c.3]

АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ИЗМЕРЕНИЯ И КОНТРОЛЯ  [c.460]


Автоматизация процессов измерения и контроля  [c.220]

Указанные свойства лазеров открывают широкие возможности их применения прежде всего в машиностроении, например, при изготовлении с очень высокой точностью гигантских станков, деталей астрономических приборов и радиотелескопов, контроле перемещений рабочих органов компараторов, координатно-измерительных машин, прецизионных металлообрабатывающих станков с числовым программным управлением и т. д. Большие перспективы использования лазерных интерферометров в станкостроении обусловлены тем, что их технические характеристики отвечают требованиям, предъявляемым современным точным станкостроением к измерительной аппаратуре увеличение диапазона и скорости контролируемых с высокой точностью перемещений, возможность автоматизации процесса измерения и получение результатов измерения в цифровой форме, удобной для оператора.  [c.229]

При этом важной проблемой является большое время получения контрольно-измерительной информации. Сокращение времени контроля измерений и обработки результатов при сохранении (и даже расширении) объема измерений и контроля, уменьшение общих затрат на измерения, повышение достоверности контроля, преимущества которых обеспечивает внедрение автоматизации во все процессы измерений и контроля сложных технических устройств ЛА. Эти преимущества проявляются тем в большей степени, чем выше уровень автоматизации и быстродействия.  [c.178]

АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ИЗМЕРЕНИЯ, КОНТРОЛЯ, ВЫБОРА И ОБРАБОТКИ РЕЗУЛЬТАТОВ  [c.149]

Радиоактивные изотопы многих десятков элементов используются в машиностроении как меченые атомы и как источники излучения при исследовании взаимодействия контактирующих веш,еств, диффузии и растворимости, износостойкости деталей машин и инструментов, при испытании и изменении свойств конструкционных, смазочных, горючих и других материалов, для измерения и контроля различных параметров, установления физико-химических и технологических закономерностей процессов при их автоматизации.  [c.3]

Из числа разработанных приборов за последние годы следует указать на радиоактивные уровнемеры, основанные на принципе просвечивания объекта контроля радиоактивным гамма-излучением, которые позволяют производить дистанционное измерение и контроль высоты уровня или положение границ раздела двух сред с помощью следящей системы с радиоактивным датчиком, без контакта с измеряемой средой. Радиоактивные уровнемеры найдут широкое применение при автоматизации различных технологических процессов, особенно при наличии агрессивных, взрывоопасных, токсичных, вязких, сыпучих и кипящих сред.  [c.9]


Быстрые темпы автоматизации технологических процессов и повышающиеся требования к точности обработки изделий обусловливают необходимость совершенствования методов измерения и контроля.  [c.347]

Более высоким этапом повышения точности производства является переход к синтезу, т. е. к определению суммарной погрешности как отдельных технологических процессов, так и всей технологической цепи при изготовлении деталей, а также машины или механизма в целом. Особое значение это приобретает в связи с существенным повышением степени автоматизации производственных процессов, что обусловливает необходимость не только прогнозировать точность каждой из составляющих технологических процессов, но и обеспечивать решение задачи автоматического управления этими процессами в целях получения требуемой точности изделий при минимальных производственных затратах. При этом методика анализа и синтеза погрешностей деталей, а также машин и приборов в целом предусматривают обеспечение точности в комплексе начиная от расчетна-конструкторских разработок при проектировании технологических процессов всех стадий производства, включая проектирование и создание средств измерений и контроля.  [c.37]

В книге изложены теоретические основы технических измерений, проанализированы причины возникновения ошибок и показаны способы обработки результатов для повышения их достоверности. Рассмотрены принципы построения измерительных систем, описаны совершенные способы приема и преобразования информации, а также вопросы автоматизации процесса измерения. Последовательно изложены применяемые в настоящее время в промышленности методы и приборы для контроля электрических и тепловых величин, времени, числа, линейных размеров, скоростей, мощности, плотности, вязкости, концентрации и многих других параметров.  [c.278]

В постановлении предусмотрены меры по повышению технического уровня производства, его технологической оснащенности в целях создания условий для стабильного выпуска высококачественной продукции широкая автоматизация производства, внедрение новейших технологических процессов, стимулирование ускоренного обновления основных производственных фондов, аттестация технологических процессов, оборудования, оснастки, инструмента, средств измерений и контроля.  [c.10]

На производстве большое внимание уделяется механизации и автоматизации процесса измерений. Контроль изделий осуществляется как простейшими устройствами и приспособлениями, так и сложными контрольными автоматами.  [c.100]

Вискозиметры с непрерывной регистрацией вязкости (ГОСТ 13368—73) необходимы для производственного контроля и автоматизации, когда нередко требуется непрерывно измерять вязкость вещества, находящегося в котле или ванне или же протекающего по трубопроводу, без отбора образца вещества и без нарушения хода технологического процесса. Измерение а)  [c.191]

В условиях автоматизированного производства все больше внедряются комплексные линии неразрушающего контроля качества изделий. Особенностью построения и применения этих линий является сочетание различных физических методов для одновременного измерения нескольких характеристик качества изделий в потоке их производства при полной автоматизации процессов контроля и сортировки. При создании таких линий по единому типовому проекту значительно упрощается обслуживание системы контроля, сокращаются производственные площади на участках отделки и появляется возможность перейти к автоматическому управлению технологическим процессом по результатам оценки качества изделия [2].  [c.323]

Радиометрический метод. Рекомендуется применять для измерения любых покрытий при условии различия на 2—4 атомных номера основы и покрытия. Пределы измерения приборами, выпускаемыми отечественной промышленностью, достигают О—100 мкм, при этом погрешность измерения 10%. Достоинством этого метода являются возможность контроля покрытия без контакта с поверхностью детали, длительный срок службы датчиков, возможность автоматизации процесса контроля при любой серийности производства.  [c.115]


Очевидно, что контроль более сложных, точных и ответственных объектов будет более трудоемким, что применение специализированных средств, механизация и автоматизация измерений снижают трудоемкость контроля, позволяя обойтись меньшим количеством работников. Если технологический процесс, оборудование и оснастка надежно обеспечивают высокое качество и однородность продукции, следует применять выборочный статистический контроль, что также снижает трудоемкость контроля.  [c.14]

О. Б. Балакшин. О влиянии переходного процесса на точность измерения постоянной времени пневматических приборов контроля размеров.— Сб. Автоматизация исследований и контроля точности в машиностроении . Наука , 1967.  [c.108]

Применение автоматических методов измерений имеет огромное значение в первую очередь с точки зрения автоматизации процессов производства. С этой точки зрения во главу угла должна быть поставлена автоматизация контроля в процессе обработки, так как это не только даёт возможность свести к минимуму затраты времени на измерение, но и является наиболее эффективной формой предупреждения брака, облегчает многостаночное обслуживание, сокращает время обработки (поскольку отпадает необходимость в останове станка для контрольной операции) и позволяет в ряде случаев автоматизировать самый процесс обработки (автоматические подналадчики). Область применения автоматов для контроля снятых со станка объектов определяется в первую очередь рассортировкой  [c.222]

Учитывая известные ограничения области применения автоматических методов измерений, следует обратить особое внимание на сравнительно легко реализуемые в любом инструментальном цехе мероприятия, направленные к повышению производительности контроля (так называемая малая автоматизация ). К таким мероприятиям относятся изготовление простейших измерительных приспособлений, элементарная рационализация конструкций калибров, изготовление комбинированных контрольных стендов, на которых смонтирована группа различных калибров для проверки данного изделия, широкое применение специальных измерительных приспособлений с резьбовыми роликами, применение механических приспособлений, ускоряющих процесс свинчивания и навинчивания контролируемых резьб, замена предельных двухсторонних высотомеров простыми индикаторными приспособлениями и т. д.  [c.222]

Измерение рабочих характеристик и сообщения о них 700 Измерения и проверки при контроле качества 710 Измерение характеристик качества 711 Физические свойства 712 Динамические свойства 713 Структурные свойства 714 Химические свойства 716 Старение и ухудшение качества 717 Погрешности измерения 720 Управление процессами 730 Обработка данных 731 Сбор данных 732 Преобразование данных 733 Интерпретация данных 734 Хранение данных 735 Поиск данных 740 Автоматизация 750 Измерения 751 Визуальные 752 Вкус 753 Обоняние 754 Осязание 755 Звуковые 760 Инспекция 761 Входной контроль 762 Инспекция во время процесса 763 Инспекция на этапе сборки  [c.86]

В технической кибернетике появилось новое, прогрессивное направление, предоставляющее большие возможности для значительного упрощения задачи автоматизации. Речь идет о самообучающихся (самонастраивающихся, самоорганизующихся, самосовершенствующихся) системах, применение которых не связано с необходимостью раскрытия физической сущности происходящих в технологическом процессе явлений и определения взаимной связи между параметрами. Для использования этих систем достаточно накопить статистические данные о процессе, которые после сравнительно несложной обработки (оптимизации) могут быть непосредственно использованы для автоматизации управления. В отличие от систем с обратной связью, в которых информация, необходимая для корректировки программы, получается на основе контроля изделия и, следовательно, необходимые действия предпринимаются только после возникновения в изделии отклонений, новый метод основан на измерении параметров, влияющих на протекание процесса, что позволяет вести управление на основе предугадывания , не допуская отклонений в характеристиках изделия.  [c.122]

Последним словом техники в области поверочной аппаратуры является полностью автоматизированная система контроля. Приборы такого рода значительно отличаются друг от друга в зависимости от степени автоматизации и сложности проверяемой системы. Обычно такие приборы не составляют часть системы и позволяют производить большое число поверок за короткий период времени. Эти приборы обеспечивают необходимые возбуждающие сигналы, а также измерения и запись получаемых в результате проверки значений контролируемых выходных сигналов. Большинство приборов работает в последовательном режиме, следуя заранее заданной программе, т. е. порядку запланированных проверок. При обнаружении отклонения можно приостановить дальнейшие проверки или продолжать работу и зафиксировать все отклонения в зависимости от используемого рабочего режима или принятой программы проверок. Наиболее совершенная автоматизированная аппаратура контроля полностью заменяет человека в процессе определения места и причин неисправностей. Однако для управления процессом и осуществления требуемой замены запасными частями еще необходим человек.  [c.60]

Высокая производительность, точность и надежность измерительных машин и роботов делают их незаменимым средством для прецизионного (особо точного) измерения геометрических характеристик деталей сложной формы. Предварительное (априорное) программирование и оперативное перепрограммирование процесса измерений на управляющей ЭВМ обеспечивает возможность полной автоматизации размерного контроля в условиях ГАП.  [c.279]

Некоторые определения качества воды основываются на измерении физических параметров, при них исследуются физические свойства воды и водных растворов величина pH, электропроводность, плотность, прозрачность и т. п. Эти определения выполняются просто с помощью приборов, и автоматизация пх работы является наиболее доступной. Химические методы контроля требуют введения реактивов, -проведения необходимых реакций при помощи специально сконструированных приборов, а следовательно, автоматизация работы этих приборов является гораздо более трудной задачей. Это вынуждает ограничивать применение автоматических приборов химического контроля. Чтобы избежать их применения, стремятся сами процессы водообработки и водный режим поддерживать на оптимальном уровне, применяя для этого автоматические регуляторы количества дозируемых реагентов, температуры и других параметров.  [c.97]


САПР является одной из применяемых в настоящее время систем автоматизации. В связи с этим ее применение сочетается с применением других автоматизированных систем измерений, эксперимента, контроля, испытаний, организационного управления (АСУ), управления технологическими процессами (АСУ ТП), обучения (АОС), диспетчерского управления, управления запасами, планирования, прогнозирования и др. В зависимости от специфики работы конкретной организации, применяющей САПР и другие системы автоматизации, эти системы объединяют в общую (интегрированную) систему автоматизации (ИСА) с общим (или частично общим) техническим и некоторыми другими обеспечениями. Наиболее тесно сопрягаются САПР с робототехникой, станками с числовым программным управлением (ЧПУ), а в настоящее время — с гибкими автоматизированными производствами (ГАП), АСУ, АСУ ТП и др., образуя интегрированную производственную систему (ИПС).  [c.189]

Автоматизация процесса контроля предусматривает выработку испытательных сигналов и подачу их в объект контроля измерение ответных (выходных) сигналов объекта сравнение ответных сигналов со стандартными сигналами анализ результатов сравнения и подачу результирующего сигнала в программирующее устройство на дальнейшее продолжение проверки или на прекращение ее  [c.353]

Процесс контроля имеет различные свойства, которые задаются при его проектировании и проявляются при его проведении. Характеристики свойств контроля определяются качественными и количественными признаками. Примерами качественных признаков могут служить автоматизация и механизация контроля (ручной, механизированный, автоматизированный), используемый метод контроля (разрушающий, неразрушающий). Количественные признаки свойств контроля являются его показателями (точность измерений, достоверность контроля и т. п.).  [c.440]

Анализ задач на этапе выбора оборудования. Автоматизация выбора КИП и обработки информации о качестве продукции на базе применения ЭВМ. Рекомендации по выбору средств контроля относят к трем этапам технологической подготовки и освоения процессов технического контроля проектирование новых маршрутных процессов, построение контрольных операций и переходов, обеспечение заданной точности измерений объектов с высокими требованиями качества. Выбор средств контроля рассматривают по стадиям производства — горячей и холодной обработки, сборочных.  [c.446]

ГПС в целом Автоматизация процесса контроля в безлюдном и малолюдном режиме. Обработка измерительной информации при коор-д атных и других измерениях. Обеспечение статистического управления точностью производственного процесса. Оптимизация режимов контроля, обеспечение статистического приемочного контроля. Управление взаимодействием элементов САК и технологического оборудования. Информационное обеспечение производственного и технологического процессов. Оптимизация информационных потоков. Определение и анализ аварийных ситуаций. Контроль прохождения и реализации управляющих команд. Выдача информации Ь АСУ ТП для организации гибкого управления ПТС.  [c.467]

Основные задачи магнитных измерений, отмеченные нами в предыдупигх изданиях автоматизация процесса измерений и применение новейших кибернетических средств, разработка методов контроля готовых изделий и полуфабрикатов, исследование процессов неремагничи-вания материалов в конкретных условиях их работы, являются и сейчас наиболее важными для данной отрасли измерительной техники.  [c.3]

В-четвертых, на систематическом повышении уровня измерительной техники и уровня механизации и автоматизации средств контроля. В этой области передовые предприятия накопили интересный, заслуживающий широкого распространения опыг создания высокопроизводительных средств контроля, позволяющих на всех этапах производственного процесса обеспечить изготовляемые изделия соответствующими средствами измерения и контроля.  [c.21]

Необходимость автоматизации сварочных процессов определяется, прежде всего, такими их характерными особенностями, как высокие энергетические параметры, скоротечность отдельных этапов энергетических преобразований и процесса формирования сварного соединения, труднодоступность зоны сварки для непосредственного измерения и контроля, повышенный уровень вредных воздействий на здоровье человека и необходимость оперативной оптимизации сварочных процессов в соответствии с выбранным критерием.  [c.17]

Общие преимущества всех ультразвуковых методов контроля возможность работы в активных средах, диета нциоиность, ничтожно малое рабочее время, измеряемое миллисекундами, а иногда и микросекундами, приводящее к практич. непрерывности процесса измерения и позволяющее не только автоматизировать само измерение, но и использовать полученные результаты для автоматизации управления тех-нологпч. процессом. Важной особенностью всех ультразвуковых методов исследования является также то, что вследствие очень большой их чувствительности  [c.237]

К области электрификации станков относятся электрические методы активного измерения и контроля размеров обрабатываемой детали в процессе самой работы электрические способы закрепления детали на станке как при вращательном движении, так и при поступательном движении обрабатываемой детали электрические сигнальные средства, автоматизация циклов работы станков и их управление электрокопирование с применением фотоэлементов электротормоза и муфты, применяемые на большинстве типов станков электроуправление гидроприводами и пневмоприводами полное применение электроавтоматики при работе автоматических линий станков и, наконец, электроавтоматика, применяемая на всех объектах рабочих линий автоматических заводов. Развитие электроавтоматики не ограничено и имеет большое значение в деле создания новых высокопроизводительных полностью автоматизированных агрегатов для машиностроительных предприятий.  [c.132]

УЗ-вые методы, основанные на измерениях скорости и затухания звука, широко используются в технике для определения свойств и состава веществ и для контроля технологич. процессов (см. Контрольно-измерительные применения ультразвука). По скорости звука определяют упругие и прочностные характеристики металлич. материалов, керамики, бетона, степень чистоты материалов, наличие примесей. Измерения скорости и поглощения в жидкостях позволяют определить концентрацию растворов, следить за протеканием химич. реакций и других процессов, за ходом полимеризации. В газах измерения скорости звука дают информацию о составе газовых смесей. При УЗ-вых измерениях в твёрдых телах используют частоты 10 —10 Гц, в жидкостях — до 10 Гц, в газах — не выше 10 Гц выбор частотных диапазонов соответствует поглощению УЗ в этих средах. Точность определения состава веществ, концентрации примесей УЗ-выми методами высока и составляет доли процента. По изменению скорости звука или по Доплера эффекту в движущихся жидкостях и газах определяют скорость их течения (см. Расходомер). Для исследования свойств веществ используют также методы, основанные на зависимости параметров резонансной УЗ-вой колебательной системы от акустич. сопротивления нагрузки, т. е. от свойств нагружающей её среды. Это т. н. импедансные методы, к-рые применяются в УЗ-вых сигнализаторах уровня, вискозиметрах, твердомерах и т. д. Во всех перечисленных методах измерений и контроля свойств вещеегв применяются весьма малые интенсивности УЗ эти методы требуют малого времени для измерений, легко поддаются автоматизации, позволяют производить дистанционные измерения в агрессивных и взрывоопасных средах и осуществлять непрерывный контроль веществ в труднодоступных местах.  [c.17]


Контрольно-измерительные роботы находят все более широкое применение в металлургической, радиоэлектронной, приборостроительной, станкостроительной и других отраслях промышлепности как эффективное средство измерения и контроля качества изделий. Они обеспечивают измерение параметров по заданной программе и открывают возможность для полной автоматизации различных процессов производства и технологии. Особенно перспективно применение контрольно-измерительных роботов в гибких автоматизированных производствах как подсистем контроля и управления качеством. Как у нас в стране, так и за рубежом эти роботы широко применяют для особо точного измерения геометрических характеристик деталей сложной конфигурации.  [c.230]

В связи с повышением производительности машин и скоростей движения отдельных их органов, а также в связи с требованиями к высокому качеству изделий человек стал испытывать непреодолимые затруднения в управлении машинами, контроле технологических процессов, выполняемых машинами, измерении отдельных параметров выпускаемой продукции и т. д. В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерения параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления процессами и их контроля. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподи]ипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.13]

По степени автоматизации процессов средства контроля подразделяют на следующие 1) приспособления (механизированные с несколькими универсальными головками и автоматизированные светофорные с различными датчиками), в которых операции загрузки и съема осуществляются вручную 2) полуавтоматические системы, в которых операция загрузки осуществляется вручную, а остальные операции — автоматически 3) автоматические системы, D которых весь цикл работы автоматизирован 4) самонастраивающиеся (адаптивные) автоматические системы, в которых автоматизированы циклы работы и настройки, или системы, которые могут приспособливаться к изменяющимся условиям среды. По воздействию па технологический процесс автоматические средства подразделяют на средства пассивного контроля (контрольные автоматы), осуще-ствляюа ие лишь рассортировку деталей на группы качества без непосредственного участия человека, и средства активного контроля, в которых результаты контроля используются для автоматического управления производственным процессом, вызывая изменение его параметров п улучшая показатели качества. Действие автоматизированных приспособлений, контрольных автоматов п средств активного контроля основано на использовании различного рода измерительных преобразователей. Измерительный первичный преобразователь (ГОСТ 16263—70) —это средство измерения или контроля, предназначенное для выработки сигнала в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Измерительный преобразователь как составной элемент входит в датчик, который является самостоятельным устройством и кроме преобразователя, содержит измерительный шток, рычаг с наконечником, передающий механизм, элементы настройки и др. Остальные элементы электрической цепи измерительной (контрольной) системы конструктивно оформляют в виде отдельного устройства электронного блока, или электронного реле). Наибольшее распространение получили измерительные (контрольные) средства с электроконтакт-нымн, пневмоэлектроконтактнымп, индуктивными, емкостными, фотоэлектрическими, радиоизотопными и электронными преобразователями.  [c.149]

Полуавтоматизированные технические средства позволяют частично исключить участие человека из процесса измерений. То есть имеет место частичная автоматизация какой-либо операции геодезического контроля, например автоматизация положения экран--марки электро-, фото-, телерегистрация положения марки или светового пятна автоматизация перемещения визирной цели и т.д.  [c.133]

Поясним особенности интеллектуальных станков на примерах [24, 100]. Рассмотрим токарный обрабатывающий центр для ГАП. Интеллектуализация управления центром требует полной автоматизации таких функций, как программирование и настройка станка на обработку конкретной детали, оптимальная загрузка-разгрузка деталей и смена инструмента, контроль за процессом обработки для предотвращения аварий (вызываемых, например, поломкой инструмента), уборка стружки и охлаждение в зоне резания, диагностика возможных неисправностей станка или его системы управления, измерение обрабатываемых поверхностей и их распознавание. Некоторые из этих функций легко автоматизируются в рамках обычных систем АПУ, другие требуют разработки соответствующих элементов интеллекта. Последнее относится, например, к самопрограммированию и самодиагностике системы АПУ, обнаружению поломки инструмента и идентификации геометрических особенностей обрабатываемой поверхности. Что касается автоматизации функций программирования и диагностики, то соответствующие программно-аппаратные средства для их реализации были описаны в п. 4.2 и 4.3. Поэтому здесь остановимся только на автоматизации обнаружения поломок инструмента и идентификации свойств обрабатываемой поверхности.  [c.128]

Измерительные установки и системы — это совокупность средств измерений, объединенных по функциональному признаку со вспомогательными устройствами, для измерения одной или нескольких физических величин обьекта измерений. Обычно такие системы автоматизированы и обеспечивают ввод информации в систему, автоматизацию самого процесса измерения, обработку и отображение результатов измерений для восприятия их пользователем. Такие установки (системы) ис-полюуют и для контроля (например, производственных процессов), что особенно актуально для метода статистического контроля, а также принципа TQM в управлении качеством (см. гл. 6).  [c.500]


Смотреть страницы где упоминается термин Автоматизация процессов измерения и контроля : [c.532]    [c.199]    [c.44]    [c.117]    [c.245]   
Смотреть главы в:

Взаимозаменяемость, стандартизация и технические измерения  -> Автоматизация процессов измерения и контроля

Метрология, стандартизация и сертификация  -> Автоматизация процессов измерения и контроля



ПОИСК



Автоматизация измерений

Автоматизация обработки результатов измерений и проектирования процессов контроля

Автоматизация процесса

Контроль измерением

Контроль процесса св рки



© 2025 Mash-xxl.info Реклама на сайте