Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы для газовых турбин

В 1937 г. А. М. Люлька был разработан проект турбореактивного двигателя с осевым компрессором и кольцевой камерой сгорания, на несколько лет опередивший появление аналогичных проектов за рубежом. В 1943—1944 гг. под его же руководством в Центральном институте авиационного моторостроения был построен экспериментальный турбореактивный двигатель С-18 (рис. 104). Тогда же (1940—1945 гг.) в ЦИАМ велась разработка оригинальной конструкции авиационного газотурбинного двигателя с трехступенчатой газовой турбиной, с трехступенчатым центробежным компрессором и с системой испарительного жидкостного охлаждения по схеме, предложенной в 1935 г. проф. В. В. Уваровым. С 1945 г. к проектированию турбореактивных двигателей помимо группы А. М. Люлька были привлечены большие конструкторские коллективы А. А. Микулина,В. Я. Климова и других ОКБ и значительно увеличены объемы необходимых теоретических и экспериментальных исследований. К этому же времени относится начало работ по изысканию жаропрочных материалов для газовых турбин двигателей во Всесоюзном институте авиационных материалов (ВИАМ).  [c.369]


МАТЕРИАЛЫ ДЛЯ ГАЗОВЫХ ТУРБИН  [c.401]

Материалом для газовых турбин могут служить стали аустенитного класса, к которым относятся жароупорные стали на хромоникелевой основе типа 18-8, ЭИ-123, ЭИ-405.  [c.344]

Структура материала, испытанного в строго контролируемых лабораторных условиях, не должна отличаться от его структуры после работы в условиях реальной эксплуатации. Из экономических соображений также желательно, чтобы лабораторные методы обеспечивали ускоренное проведение испытаний. Все методы испытаний можно разделить на две группы. В одних основное внимание уделяется как можно более точному моделированию реальных условий эксплуатации материала. Примером могут служить методы стендовых испытаний материалов для газовых турбин с применением горелок [7, 8]. В других методах особое значение придается строгому контролю за соблюдением заданных условий испытания. Конечно, и в этом случае реальные условия работы материала учитываются при выборе условий проведения эксперимента, однако основное внимание в отличие от стендовых методов испытания уделяется как можно более точной выдержке заданных условий. Как правило, такие эксперименты проводятся в лабораторных трубчатых печах [9, 10].  [c.50]

Танталовые и вольфрамовые сплавы не используются в газовых турбинах. Этому препятствует их склонность к окислению кроме того, высокая плотность и относительно высокая стоимость этих металлов и в будущем вряд ли позволит рассматривать их в качестве материалов для газовых турбин, способных конкурировать с суперсплавами.  [c.342]

Моделирование реальных условий работы материалов в газовых турбинах может осуществляться разными методами [7, 8]. Стендовые установки для проведения таких испытаний, как правило, состоят из горелок для сжигания газообразного или жидкого топлива, системы подачи топлива и воздуха, камеры сгорания и специального отсека для размещения образцов, где они могут закрепляться стационарно или в специальных держателях, допускающих быструю смену образцов. Чаще всего испытывают образцы цилиндрической формы, хотя иногда используют образцы аэродинамической формы или какой-либо другой конфигурации. Для получения на поверхности образцов слоя загрязняющего осадка в рабочий объем установки может вводиться соответствующее загрязняющее вещество, например морская вода, либо прямым впрыскиванием в камеру сгорания, либо подмешиванием в топливо.  [c.52]

Области применения (согласно оценкам годовая потребность в изделиях из уплотненного порошка составляет около 450 т) определяют и границы применимости порошковой технологии для изготовления деталей из суперсплавов для газовых турбин. Порошковые суперсплавы применяются в тех случаях, когда "обычные" детали, изготовленные методами литья или штамповки, ие отвечают предъявляемым рабочими условиями требованиям, выполнение которых необходимо для получения двигателей с высокими рабочими характеристиками. Разрушение обычных материалов, как правило, происходит в результате образования сегрегаций, что вызывает ухудшение механических свойств или их нестабильность и снижение термомеханических характеристик. В таких случаях порошковая технология, хотя она и не является панацеей от всех бед, вполне может заменить другие (обычно более предпочтительные) методы изготовления деталей, не способные обеспечить требуемое качество изделий.  [c.219]


При изготовлении насадок сопел для разбрызгивания химически активных жидкостей, мешалок, стойких против коррозии, облицовки химической аппаратуры, камер электросварки под флюсом, в составе объемных сопротивлений, термисторов, абразивных материалов, детали газовых турбин  [c.27]

Данный пример характеризует одну из главных причин, затрудняющих использование двигателей- Стирлинга в- коммерческих целях для такого двигателя, как и для газовой турбины, основной вопрос — это вопрос конструкционных материалов. Некоторые части двигателя (нагреватель и полость расширения) постоянно подвергаются воздействию высокой температуры, и это накладывает ограничение на использование конструкционных материалов в указанных узлах двигателя.  [c.35]

Неприменимы ряды предпочтительных чисел и для определения параметров прогрессивно развиваемых и модернизируемых машин, параметры которых на каждой стадии зависят от технических возможностей и потребностей соответствующих отраслей народного хозяйства. Так, мощность тепловых машин зависит от их начальных параметров (давления и температуры) и частоты вращения. Ни один из этих параметров невозможно произвольно увеличить. В некоторых случаях они имеют оптимальное значение (например, степень сжатия в газовых турбинах), изменение которого ухудшает показатели машины. Увеличение температуры и частоты вращения возможно только на базе технических усовершенствований (повышения жаропрочности материалов, улучшения охлаждения термически напряженных деталей). Результаты этих поисковых работ невозможно уложить в ряды предпочтительных чисел.  [c.63]

При очень хорошей жаропрочности и жароупорности термостойкость этого материала неудовлетворительна. Даже кермет с 70% Сг и 30% АЬОз имеет термостойкость, недостаточную для применения в качестве лопаток газовых турбин. Эти материалы применяются для изготовления тиглей, сопел, колпачков термопар и т. п.  [c.610]

В 1961 г. Харьковский турбинный завод (ХТЗ) выпустил газовую турбину мощностью 50 тыс. кет, в которой температура газа на входе 800° С. Это— первая в мире газотурбинная установка большой мощности. Теория указывает, что при температуре газа на входов газовую турбину 1200° С газовая турбина превзойдет по экономичности все другие тепловые двигатели. Весь вопрос в жароупорных материалах. Советские металлурги разработали материал, способный выдерживать длительную температуру порядка 700— 800° С, но для сильно нагруженных роторов, дисков предельная температура его снижается до 650—670° С. Конструкторы ХТЗ нашли эффективный способ настолько интенсивного охлаждения горячих деталей турбины, что при температуре газа в 800° С детали не нагревались выше допустимой температуры [22].  [c.51]

Как только станут доступны воспроизводимые образцы композитов, основное внимание следует уделить влиянию условий эксплуатации материала на сплошность поверхности раздела и механические свойства, зависящие от состояния поверхности раздела. Подобно тому как это было при разработке композитов А1 — В, такие исследования очень важны для установления точных параметров технологии изготовления материала, с тем чтобы получить именно то особое состояние поверхности раздела, которое необходимо для конкретных условий применения материала. Если композит предназначается, например, для лопаток газовых турбин, то конструктор должен установить реальные требования к этим анизотропным материалам с ограниченной пластичностью таким образом, чтобы применительно к условиям использования можно было эффективно воздействовать на свойства, зависящие от со стояния поверхности раздела, например, на поперечную прочность В данной главе показано, что в настоящее время известны основ ные принципы, с помощью которых может быть изменена струк тура поверхности раздела в металлах, армированных окислами Однако из-за отсутствия образцов с воспроизводимыми характе ристиками влияние изменения состава и структуры поверхности раздела на механические свойства композитов практически не изучено.  [c.351]

Последняя группа матриц, о которой здесь упомянем, это группа сплавов на никелевой основе, используемая в качестве материалов матрицы для высокотемпературных приложений. Сплавы на никелевой основе использовались в последние 20 лет в конструкциях, работающих при высоких температурах, например в лопатках роторов газовых турбин. Для получения существенного увеличения прочности они армировались вольфрамовыми волокнами. Высокая плотность композита ограничивает полезную объемную долю волокон примерно до 25%, поэтому необходима высокопрочная матрица. В этом случае матрица дает значительный вклад в общую характеристику композита и, в частности, в его длительную прочность.  [c.284]


Газоабразивное изнашивание — широко распространенный вид поверхностного разрушения, свойственный пневмотранспортным установкам, струйным и ударным мельницам, дезинтеграторам, газовым турбинам на твердом топливе, трубопроводам и арматуре для добычи и транспортировки природного газа, лопастям вертолетов, горным и землеройным машинам и т. д. Большой урон от этого вида изнашивания стимулирует разработку новых и эффективных методов оценки износостойкости материалов. Сущность одного из них состоит в том, что испытуемые и эталонные образцы подвергаются одновременному воздействию потока абразивных частиц, создаваемого центробежным ускорителем со стандартными размерами рабочих органов при фиксированных режимах испытаний. Износостойкость материала оценивается путем сравнения его износа с износом эталонного образца. Воспроизводимость результатов при применении в качестве средства измерения износа аналитических весов достаточно высокая, однако требуется, чтобы накопленный весовой износ составлял 5 мг, что при малых скоростях частиц приводит к значительной продолжительности испытаний и большому расходу абразивного материала.  [c.76]

Сплавы этого класса составляют большинство среди жаропрочных материалов, пригодных для использования в авиационных газовых турбинах и в других областях, требующих повышенной стойкости. Однако литературные данные, обсуждаемые ниже, относятся главным образом к поведению сплавов при низких температурах. В этих условиях рассматриваемые сплавы представляют интерес в связи с тем, что позволяют достигать уровней прочности свыше 1100 МПа. Микроструктура, обеспечивающая такую возможность, сравнительно проста. Она представлена твердым раствором г. ц. к. у-фазы, содержащим когерентные частицы у [обычно К1з(А1, Т1)] и небольшую объемную долю дисперсных карбидов [271, 275]. Если пренебречь этими карбидами, то доминирующее влияние оказывает упорядоченная структура (ЕК) у, а отдельные сплавы различаются составом у -фазы, поскольку в нее могут входить не только А1 и Т1, но и N6 (и, в меньшей степени, V, Мо, Та и W) [274, 276]. Последовательность образования выделений обычно такова [123, 126, 272, 274]  [c.113]

Наличие большого разнообразия,материалов, методов изготовления заготовок и упрочнения деталей, возможность их дифференцированного применения облегчают задачу создания рациональных конструкций машин по сравнению с условиями, существовавшими до недавнего прошлого, когда противоречивые требования, вытекающие из резко различных условий работы отдельных частей машин, приводили к поискам материалов с сочетанием совершенно необычных для них свойств. В ряде случаев это приводило к невозможности осуществить принципиально новые конструкции машин, что, например, имело место на протяжении десятилетий в конструкциях газовых турбин.  [c.330]

Углеграфитовые антифрикционные материалы применяются для изготовления подшипников, поршневых колец, торцовых уплотнений, работающих при температурах от —80 до +400° С в условиях сухого трения и применяющимися в машинах и аппаратах химического машиностроения, шахтных, формовочных и печных конвейерах, в бумагоделательных, текстильных и других машинах жестких уплотнений в паровых и газовых турбинах, компрессорах, насосах.  [c.713]

Потребность в более высокожаропрочных материалах, как правило, обладающих низкой технологической деформационной способностью, а также экономические соображения поставили перед металловедами задачу разработки литейных жаропрочных сплавов для лопаток газовых турбин при изготовлении их методом литья по выплавляемым моделям.  [c.32]

В текущее десятилетие впервые начались серьезные попытки применения керамиковых материалов для ответственных деталей и узлов газовых турбин — камер сгорания, сопловых венцов, рабочих лопаток и роторов.  [c.214]

На современном этапе распространению порошковой технологии способствует постоянное повышение требований к материалам для газовых турбин. Новые порошковые материалы типа дисперсионно—упрочняемых сплавов или сплавов серии NiMoAl обладают большими потенциальными возможностями, расширяющими возможные области их применения, однако с развитием конкурирующих технологических процессов и таких материалов, как керамики и керамические композиционные материалы, все большее значение приобретает фактор экономической эффективности.  [c.259]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]

Замещенные ароматические сложные эфиры фосфорной кислоты серьезно не рассматривались в качестве высокотемпературных жидкостей из-за плохих вязкостно-температурных характеристик и коррозионной агрессивности при высоких температурах [30]. Однако они использовались при 5%-ной и более концентрации в качестве противоизносных присадок в смазочных материалах военной спецификации для газовых турбин. Было показано, что все рассмотренные фосфаты чувствительны к -у-облуче-нию. При облучении значительно увеличиваются кислотное и- коксовое числа. При этом вязкость увеличивалась на 30—50%. Эти результаты были подтверждены работами Стенфордского научно-исследовательского института [17] при облучении электронами трикрезилфосфата наблюдались следы метана и толуена с небольшим количеством одноосновных кислот и довольно значительным количеством двухосновных кислот.  [c.123]


Многие тепловые двигатели из числа активно применяемых в наши дни относятся к числу "циклических" в связи с циклическим изменением запаса энергии (например, циклы Отто или Дизеля). Циклы Рэнкина (Rankin, для паровой турбины) и Брайтона (Bryton, для газовой турбины) и их различные варианты характеризуются постоянным тепловым потоком. Циклы Отто, Дизеля и Брайтона суть циклы внутреннего сгорания, при которых топливо сжигается в рабочем потоке, и поэтому наивысшая температура цикла достигается не посредством теплопереноса. Однако она зависит от свойств материала деталей, контактирующих с горячим потоком. В газовой турбине, где используется цикл Брайтона, камера сгорания и детали турбины контактируют с "постоянно горячим" рабочим потоком, тогда как в циклах Отто и Дизеля поток попеременно то горячий, то холодный. Следовательно, в циклах Отто и Дизеля пиковая температура может быть стехиометрической, а газовая турбина может приближаться к стехиометрическим температурам лишь настолько, насколько позволяют свойства использованных в ней материалов. В данной главе внимание сосредоточено на работе газовой турбины.  [c.49]

Абраимов Н.В. Высокотемпературные материалы н покрытия для газовых турбин. - М. Машиностроение, 1992 (IV). -25 л. ил. - БВЫ 5-217-01453-9 (в пер.) 5 р. 50 к., 3000 экз.  [c.97]

Никель широко применяется в химической промышленности для изготовления аппаратуры, в электронной промышленности для изготовления деталей электровакуумных приборов и внутриламповой арматуры (анодов, сеток, кернов оксидных катодов), а также в других отраслях промышленности. Сложнолегированные никелевые жаропрочные сплавы являются основным конструкционном материалом современных газовых турбин, реактивных и ракетных двигателей, летательных аппаратов (диски, лопатки, роторы и др.). В электрохимической промышленности применяются сплавы никеля с медью и железом типа монель и константан для изготовления катодов.  [c.163]

Изложены o iioBEii технической термодинамики и теории тепло-и массообмена. Приведены основные сведения по процессам горения, конструкциям топок и котельных агрегатов. Рассмотрены принципы работы тепловых двигателей, паровых и газовых турбин, двигателей внутреннего сгорания и компрессоров. Описаны компоновки и технологическое оборудование тепловых электрических станций, а также оборудование промышленных теплоэнергетических установок. Первое издание вышло в 1982 г. Второе издание дополнено материалами для самостоятельной работы студентов.  [c.2]

Характеристики материалов. Лопатки паровых и газовых турбин для температур до 450 °С изготовляют их хромистых сталей 10X13, 20X13 для t < 560 °С применяют упрочненные нержавею-  [c.273]

Из этих материалов на заводе Metallwerke Plansee (Австрия) производятся опытные лопатки для авиационных газовых турбин. Как видно из табл. 27, с увеличением содержания цементирующего Ni—Со—Сг-сплава повышается ударная вязкость, значения прочности при комнатной температуре, жароупорность и падает твердость и длительная жаропрочность.  [c.608]

Армированные волокнами композиционные материалы применяются чаще всего или в форме тонких оболопек, или как лопатки двигателей газовых турбин и компрессоров. Большинство таких элементов конструкций в процессе работы могут испытывать сильные удары, перпендикулярные плоскости армирования. Поэтому пригодность композита для практических целей определяется не только обычными конструкционными параметрами, но и его ударными свойствами.  [c.322]

Важнейшей особенностью работы конструктивных элементов является циклический характер температурного поля, определяемый режимом работы изделия. Например, за двухчасовой полетный цикл транспортного газотурбинного двигателя (ГТД) температура выходной кромки лопатки существенно изменяется, при этом довольно значительно меняются и скорости нагрева при выходе на полетный режим [25]. Значительная неравномерность температурного поля свойственна охлаждаемым рабочим лапатка(М газовой турбины [71]. Менее опасные сочетания температур t и напряжений а реализуются в турбинном диске [71], однако для них свойственны высокие уровни температур и значительные градиенты. Из приведенных данных видно, что для температурного цикла нагрева элемента характерно чередование нестационарных и стационарных участков, причем последние занимают значительное время цикла. Высокие уровни температур, циклический характер температурного воздействия, чередование нестационарных и стационарных режимов создают е материале особые условия работы высокую термомеханическую напряженность, больщие уровни термических напряжений. Все это обусловливает в большинстве случаев работу материала конструктивного элемента за пределами упругости в наиболее напряженных точках наблюдается процесс циклического упругопластического деформирования, приводяший материал к разрушению за ограниченное число циклов (Ю —10 ).  [c.8]

Вал<ной областью использования композиционных материалов, как указывалось, являются теплонагруженные детали газотурбинных двигателей для транспортных и энергетических установок. К наиболее теплонагруженным деталям газовых турбин относятся рабочие и сопловые лопатки турбины, так как они принимают на себя удар горячих газов, температура которых часто превышает температуру плавления современных жаропрочных сплавов [141 ]. Наиболее жаропрочные стареющие никелевые сплавы могут работать при температуре только до 1050° С. Для них температура 1100° С составляет 0,8 и является, по-видимому, предельной, тогда как дисперсноупрочненпые композиционные материалы при температуре 1200°С способны длительно и эффективно противостоять значительным нагрузкам [46].  [c.238]

Отличительной особенностью всех методов, упрочняющих металл путем уве.пичения числа дефектов, является то, что, после их использования, при повышении температуры восстанавливается регулярность строения металла внутри зерен и прочность падает. Для предотвраш,ения этого падения прочности в самолетных и ракетных конструкциях, а также в газовых турбинах, где температура доходит до 1200—1500° С, ведется большой научно-технический поиск в направлении получения весьма высокой прочности металла за счет устранения из него дефектов. Высокая прочность идеальных по структуре (бездефектных) монокристаллов позволяет использовать весьма высокопрочные так называемые усы в композитных материалах. Устранение одной из категорий дефектов достигается за счет получения чистого (без примесей) металла путем применения вакуумной дистилляции, зонной плавки и разложения летучих соединений металлов. Устранение других дефектов, таких, как дислокации и их источники, не связанных с наличием примесей, достигается воздействием на металл высоких давлений, измеряемых тысячами и десятками тысяч атмосфер. По-видимому, устранение дефектов позволит получить металлы, прочность которых подойдет вплотную к теоретической.  [c.297]

Железохромоникелевые сплавы используются чаще всего как лопаточный или крепежный материал. Из сплава ХН35ВТ изготовляют также поковки дисков газовых турбин, а сплав ХН35ВТР может служить жаропрочным листовым материалом. Сплав ХН35ВТЮ используется для высокотемпературных пружин. Максимальная рабочая температура сплавов данного типа 725—750° С, в условиях релаксации напряжений (пружины и крепеж) — 680—700° С.  [c.160]


Но особенно важным и перспективным считается применение молибдена в атомной технике. В настоящее время в ряде стран планируется строительство газоохлаждаемых высокотемпературных реакторов с гелиевыми газовыми турбинами (174а]. В качестве материала для лопаток гелиевых турбин (рис. 1.2), работающих при 900—1000° С, проектируется использовать молибденовый сплав TZM, имеющий высокие параметры прочности и сопротивления усталости при высоких температурах. Так как в данной среде не требуется защитных покрытий от окисления, молибден здесь находится вне конкуренции с другими материалами [196а].  [c.13]

Наряду с освещением вопросов, связанных с распылива-нием жидкого топлива и с конструкциями форсунок, в книге уделено место материалам по горению единичной капли и факела жидкого топлива. Рассмотрены также некоторые принципы конструирования топочных устройств паровых котлов и камер горения газовых турбин, что необходимо для определения нужной тонкости распыливания и характера распределения капель жидкого топлива по сечению факела.  [c.7]


Смотреть страницы где упоминается термин Материалы для газовых турбин : [c.76]    [c.288]    [c.339]    [c.545]    [c.138]    [c.281]    [c.236]    [c.591]    [c.76]    [c.27]    [c.21]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 4 Том 10  -> Материалы для газовых турбин

Теплоэнергетические установки малой и средней мощности  -> Материалы для газовых турбин



ПОИСК



Материалы для лопаток компрессоров и газовых турбин

Требования к материалам газовых турбин

Турбина газовая

Турбины Газовые турбины

Турбины газовые

Условия работы деталей газовых Турбин и применяемые для них материалы



© 2025 Mash-xxl.info Реклама на сайте