Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Междоузельные атомы

Междоузельные атомы также могут объединяться и образовывать комплексы.  [c.469]

Вакансии и междоузельные атомы, их миграция играют решающую роль в диффузионных процессах.  [c.469]

При пластической деформации также возрастает концентрация точечных дефектов — вакансий и междоузельных атомов и дефектов упаковки решетки. Неравновесная концентрация образовавшихся вакансий С приближенно может быть оценена по соотношению  [c.510]

При отдыхе наиболее важный процесс — уменьшение избыточной концентрации вакансий (от Сон до vp) Вакансии мигрируют к дислокациям, границам зерен и внешним поверхностям и там аннигилируют. Междоузельные атомы аннигилируют на краевых дислокациях и при встрече с вакансиями. Скорость отдыха зависит от энергии активации само-диффузии и температуры. При одинаковых относительно Т л температурах (так называемых гомологических) скорость отдыха  [c.510]


То, что будет излагаться ниже, относится к определению структуры идеальных кристаллов, т. е. кристаллов без дефектов. Реальные кристаллы — это кристаллы с наличием самых разнообразных дефектов (вакансии и междоузельные атомы, дивакансии, дислокации, дефекты упаковки, включения второй фазы и др.). Изучение структуры реальных кристаллов, естественно, представляет более трудную задачу, и в настоящее время во многих лабораториях занимаются исследованием реальной структуры. Эти лаборатории оснащены целым арсеналом современного оборудования, включающего дифракционную, электронно-микроскопиче-скую и другую аппаратуру.  [c.36]

Полупроводники со структурой алмаза, вюрцита, цинковой обманки и близких к ним являются относительно рыхлыми. Они содержат большие межатомные пустоты, в которых могут легко раз-меш,аться междоузельные атомы. Междоузлия в структуре алмаза имеют тетраэдрическое окружение. Их расположение иллюстрируется рис. 3.4.  [c.87]

Предположим, что имеется лишь один тип дефектов, например дефекты по Френкелю. Кроме того, будем считать, что 1) объем кристалла не зависит от температуры 2) дефекты не зависят друг от друга 3) частоты колебаний атомов в решетке не зависят от наличия вакансий или междоузельных атомов.  [c.88]

Аналогично тому, как было получено выражение для концентрации дивакансий, можно получить соответствующие формулы для любого комплекса вакансий или междоузельных атомов  [c.92]

В реальных кристаллах всегда имеются примеси чужеродных атомов. При наличии точечных дефектов (вакансий и междоузельных атомов) возможно образование комплексов дефект — примесь. Естественно, что образование таких комплексов определяется как концентрацией примеси, так и концентрацией дефектов. В условиях термического равновесия концентрацию таких комплексов можно определить таким же методом, каким мы пользовались при рас-  [c.92]

В энергию связи дефекта с примесью входят две основные составляющие энергия электростатического взаимодействия между примесью и дефектом и изменение энергии деформации вокруг примесного атома. Если атом примеси отличается по размеру от атома растворителя, то деформация окружающей его области может быть уменьшена при помещении дефекта рядом с этим ато-, мом. Следует ожидать, что вакансии будут притягиваться к зонам сжатия, а междоузельные атомы — к зонам растяжения. Расчет энергии связи дефекта и примеси представляет собой сложную задачу,  [c.93]

Воспользовавшись приемом, который был использован при выводе выражения для концентрации дефектов по Френкелю в элементарных кристаллах, и полагая, что в каждой подрешетке концентрация вакансий равна концентрации междоузельных атомов,, получим  [c.93]


Здесь E A, Ем А, EiB, ув —энергии образования междоузельных атомов и вакансий в подрешетках Л и В N а а Nb — концентрации атомов в каждой подрешетке. Формулы (3.27) и (3.28) получены без учета изменения термической энтропии, связанного с изменением частот колебаний атомов при возникновении дефектов.  [c.94]

Во всех реальных кристаллах одновременно содержатся и дислокации и точечные дефекты. Между ними всегда есть некоторое взаимодействие. Дело в том, что даже вокруг простейших дефектов — вакансии и междоузельного атома — существуют поля упругих напряжений. Ясно, что междоузельный атом является сильным центром отталкивания и вызывает в решетке напряжение сжатия. Вакансия обычно, наоборот, стремится стянуть решетку вокруг себя и, следовательно, является относительно сильным центром растяжения. Области сжатия и растяжения, как мы видели, существуют и вокруг краевых дислокаций. Поэтому между дислокациями, имеющими краевую компоненту, и точечными дефектами возникает упругое взаимодействие. Междоузельные атомы и вакансии притягиваются к дислокации. В области растяже- ния возникает повышенная концентрация междоузельных атомов и пониженная концентрация вакансий, а в области сжатия —наоборот (рис. 3.26).  [c.108]

Чрезвычайно важным результатом взаимодействия физических точечных дефектов (т. е, вакансий и междоузельных атомов) с дислокациями является их аннигиляция на дислокации. Механизм такого явления можно понять из рис. 3.27, где изображена краевая дислокация, переходящая из одной плоскости скольжения в другую, расположенную выше на одно межатомное расстояние. Такой переход называют ступенькой. Если к точке А подходит вакансия, то ступенька смещается в положение В, а сама вакансия  [c.110]

Масса эффективная 231 Междоузельные атомы 86 Металлическая связь 58, 82 Модуль сдвига 124 Молекулярные кристаллы 55, 64 Момент магнитный 319  [c.383]

Упрочнение металла при наклепе объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, междоузельных атомов), а также торможением дислокаций в связи с измельчением блоков и зерен, искажением кристаллической решетки В результате наклепа образуется текстура, обладающая значительной анизотропией свойств В некоторых случаях наклеп является единственным способом упрочнения металлов и сплавов, которые не упрочняются термической обработкой, например, чистые металлы, однофазные сплавы твердых растворов.  [c.26]

Приведенные выше выражения неприменимы к облучению быстрыми электронами вследствие релятивистских эффектов. В случае облучения нейтронами с энергией 1 Мэе передаваемая энергия атомам отдачи германия в среднем составляет около 30 кэв, в результате чего получается значительно больше вторичных смеш ений, чем при бомбардировке заряженными частицами. Так как можно предположить, что большинство вторичных смещений локализуется вблизи первичных атомов отдачи, то следует ожидать, что нейтронная бомбардировка приведет к образованию небольших областей с высокой концентрацией дефектов. В случае бомбардировки заряженными частицами неоднородности такого типа не играют столь важной роли, хотя при этом сохраняется корреляция между каждым междоузельным атомом и образованной им вакансией-  [c.280]

Как размещаются в кристаллической решетке примесные атомы Чаще всего они замещают в кристалле атомы основного элемента. Примесные атомы могут быть меньше или больше атомов основного элемента. Присутствие чужаков , в особенности между узлами решетки, вызывает ее искажение. Междоузельные атомы и вакансии искажают вокруг  [c.31]

С ростом напряжений а > <т скачала возникают изолированные дефекты типа вакансий и междоузельных атомов, которые при (Т > объединяются в кластеры и формируют более сложные образования. При этом характерно иерархическое поведение дефектов так, точечные распределяются в соответствии с поведением линейных и поверхностных, линейные могут формировать границы раздела и т.д. На форме термодинамического потенциала это отражается в наличии минимумов  [c.280]

Для концентрации дефектов по Френкелю получается соотношение, аналогичное (10.7). Если N — число возможных мест для междоузельных атомов, а п — число атомов, которые покинули свои места в решетке, то  [c.220]


Парные дефекты Френкеля возникают легче в кристаллах, содержащих большие межатомные промежутки, чем в плотноупа-кованных. В последних для междоузельных атомов, попросту говоря, нет места. Примером кристаллов первого типа являются кристаллы со структурой алмаза и каменной соли, а кристаллов второго типа—металлы с плотной упаковкой. Так, например, маловероятно встретить при обычных условиях междоузельные атомы в гранецентрированных (ГЦК) металлах. Единственным типом меж-  [c.86]

По возможности размещения междоузельных атомов структуры с ионной связью занимают промежуточное положение между плот-ноупакованными металлами и полупроводниками с ковалентной связью. Несмотря на то что геометрия решетки оставляет для них некоторое пространство, ионы часто сильно различаются по объему и в результате упаковка получается довольно-таки плотной. Поэтому вероятность появления междоузельных атомов в ионных соединениях сильно изменяется от одного веш,ества к другому.  [c.87]

Дефекты по Шоттки обычно встречаются в кристаллах с плотной упаковкой атомов, где образование междоузельных атомов затруднено и энергетически невыгодно. Процесс образования дефектов в таком кристалле может происходить следующим образом. Некоторые атомы из приповерхностного слоя в результате теплового движения могут оказаться в состоянии частичной диссоциа-.  [c.87]

Предположим, что в кристалле бинарного соединения АВ нет примесных атомов и имеется riiA междоузельных атомов в подрешетке Л, Пгв междоузельных атомов в подрешетке В и соответственно ПуА И Пчв вакансий.  [c.93]

В кристаллах могут существовать и такие линейные дефекты, как ifeno4KH вакансий или междоузельных атомов. Ясно, что контур Бюргерса, проведенный вокруг области, содержащей такую цепочку точечных дефектов, не отличается от соответствующего контура Бюргерса, проведенного вокруг бездефектной области. Другими словами, для цепочки точечных дефектов вектор Бюргерса равен нулю и отличен от нуля только для дислокаций.  [c.101]

В этом случае двил< ущаяся дислокация оставляет за собой либо вакансии, либо междоузельные атомы в зависимости от знака компоненты Ь, параллельной вектору п. Если плотность материала в плоскости перемещения сохраняется, то движение дислокации обязательно сопровождается переносом вещества к этой плоскости (или от нее) за счет диффузии атомов (рис. 3.21), Такое движение называют переползанием, так как при движении дислокация переползает из своей истинной плоскости скольжения, определяемой условием (пЬ = 0). Переползание дислокаций играет важную роль при высоких температурах, когда высока диффузионная подвижность атомов.  [c.104]

В большинстве металлов энергия образования вакансий намного меньше энергии образования междоузельных атомов. Например, для благородных металлов типичные значения энергии составляют соответственно 1 и 5 эВ. Концентрация тепловых междо-  [c.108]

Можно, наоборот, в результате диффузии междоузельных атомов ввести лишний слой в промежуток между соседними слоями. Тогда при введении, например, слоя В сформируется упаковка. .. АВСВАВС. . . Этот дефект называют дефектом упаковки внедрения. Его можно рассматривать как две смежные двойниковые границы ВСВ и ВАВ.  [c.113]

В идеальной кристаллической решетке, в которой атомы -совершают лишь колебательные движения около своих положений равновесия, вообще говоря, процессы диффузии маловероятны. Диффузионное перемещение примесных атомов или собственных атомов решетки всегда связано с наличием в ней простых дефектов— вакансий, междоузельных атомов, дивакансий — и других более сложных дефектов — дислокаций, границ раздела, ваканси-онных и примесных кластеров (скоплений).  [c.198]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]


Как известно [75, 76], пластическая деформация материалов приводит к значительному увеличению плотности таких дефектов, как дислокации (или их скопления), дефекты упаковки, вакансии (или нх комплексы), междоузельные атомы и т.д. Поля искажений этих дефектов кристаллического строения вызывают смещения атомов из узлов, что приводит к упругим микродеформациям. Если размер блоков достаточно мал (-10" см), это приводит к заметному расширению дифракционных пиков на дифрактограммс. Наличие в поликристал-лическом образце микроискажений (т.е. присутствие кристаллов с вариацией периода решетки) также приводит к расширению пиков на дифрактограмме. В настояи ,ее время развит1)1 три метода (аппроксимации или интегральной ширины, гармонический анализ формы рентгеновских линий, метод моментов), основанные на анализе формы дифракционных линий, с помощью которых могут быть найдены размеры блоков и величина микродеформаций в случае их раздельного и совместного присутствия в исследуемом образце. Зачастую имеется однозначная связь между величиной микродеформаций и плотностью хаотически распределенных дислокаций.  [c.160]

Авторы [9,28] отдают предпочтение полигонизационному механизму образования ячеистой структуры, согласно которому существенную роль в формировании дислокационных ячеек играют процессы переползания краевых компонент дислокаций. Этот процесс, как известно, является самым медленным звеном полигонизации, поскольку требует переноса массы за счет диффузии точечных дефектов [9]. Избыточная концентрация точечных дефектов в деформируемом кристалле обусловлена возникновением, движением и взаимодействием дислокаций в процессе деформации, поскольку каждая дислокация, пересекаясь с дислокациями леса высокой плотности, приобретает значительное число порогов, способных порождать при дальнейшем перемещении вакансии и междоузельные атомы. В работе [9] особо подчеркивается качественно различный характер ячеистой структуры, возникающей на ранних и конечных стадиях деформации, причем это различие проявляется как в механизме образования дислокационных ячеек, так и механизме передачи пластической деформации через границы ячеистой структуры. На ранних стадиях деформации границы ячеек представляют собой клубки, сплетения, вытянутые вдоль плоскостей скольжения и в направлении скольжения. При дальнейшей пластической деформации формируется разориентированная ячеистая структу-  [c.123]

Одиночные вакансии и междоузельные атомы не во всех случаях заметно препятствуют движению дислокаций, в то время как упругое взаимодействие чужеродных атомов с дисло-кациями очень эффективно и значительно изменяет пластические свойства кристалла.  [c.49]

Во мн. случаях образование пар Френкеля и кластеров является лишь первой стадией формирования устойчивых Р. д. После возникновения вакансии и междоузельные атомы частично рекомбинируют, частично начинают движение по мишени, вступая в т. ц. квазихим. реакции друг с другом и с др. дефектами структуры мишени (примесными атомами, дислокациями или границами раздела фаз).  [c.204]

Типы и концентрация устойчивых Р. д. определяются как условиями облучения, так и свойствами самих твёрдых тел. При этом для лёгких частиц и фотонов не слишком высоких анергий наиб, характерно образование устойчивых точечных дефектов (изолиров. вакансии или междоузельные атомы, дивакансии, комплексы компонентов пары Френкеля с примесными атомами и т. п.). При облучении нейтронами устойчивый кластер представляет собой дпваканспонное ядро, окружённое примесно-дефектными комплексами. При ионной бомбардировке плотность точечных дефектов в кластере больше, чем при нейтронной, и она тем выше, чем больше масса иона. При этом важную роль в формировании устойчивых кластеров играет процесс пространственного разделения вакансий п междоузельных атомов, предшествующий стадии квазихим. реакций. В силу этого устойчивые кластеры, возникающие при ионной бомбардировке, имеют более сложную структуру II состоят из вакансионных комплексов с разл. числом вакансий, примесно-дефектных комплексов, а также атомов внедрённой примеси. При облучении кристаллов тяжёлыми ионами устойчивые кластеры представляют собой локальные аморфные области.  [c.204]


Смотреть страницы где упоминается термин Междоузельные атомы : [c.91]    [c.109]    [c.171]    [c.314]    [c.15]    [c.132]    [c.596]    [c.596]    [c.132]    [c.445]    [c.33]    [c.217]    [c.116]    [c.137]    [c.223]    [c.4]   
Физика твердого тела (1985) -- [ c.86 ]

Основы материаловедения и технологии полупроводников (2002) -- [ c.89 ]



ПОИСК



Междоузельные атомы II 233, 236. См также Дефекты в кристаллах

Мир атома

Точечные дефекты междоузельные атомы



© 2025 Mash-xxl.info Реклама на сайте