Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллы и аморфные вещества

Целью настоящего учебного пособия является систематическое изложение основ физики твердого тела, включающих общие представления о строении кристаллов и аморфных веществ, методах исследования структуры, а также различных свойствах механических, тепловых, магнитных, оптических и др.  [c.8]

Кристаллы и аморфные вещества  [c.11]

В некоторых случаях и радиационным повреждениям, наносимым веществу тяжелыми ионами, удается найти полезное практическое применение. Примерами могут служить изготовление ядерных фильтров и датировка событий по трекам продуктов деления урана. При прохождении тяжелых ионов через непроводящие кристаллы и аморфные тела вдоль трека иона из-за большой плотности ионизации (плотность ионизации пропорциональна 2 , где г — заряд иона, см. (8.24)) образуется канал сильного радиационного повреждения. Вещество в пределах канала более чувствительно к химическому воздействию и может быть удалено, например, посредством окисления и последующего травления и промывания. В результате на месте канала получаются пустоты.  [c.658]


Внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц. Жидкостям и аморфным телам свойствен лишь ближний порядок, а газы имеют беспорядочное расположение частиц при максимальной внутренней энергии системы. Состояние вещества зависит от температуры Т и значения сил межмолекулярного взаимодействия. Энергия теплового движения или так называемая энергетическая температура частиц равна кТ. При высоких температурах значение кТ превосходит энергию взаимодействия молекул и вещество может быть только газом. Напротив, в кристалле частицы связаны сильно и энергия взаимодействия много больше кТ.  [c.31]

Полученные к настоящему времени многочисленные экспериментальные данные свидетельствуют о существовании в аморфных твердых телах, так же как и в кристаллах, разрешенных и запрещенных участков энергетического спектра, т. е. о наличии разрешенных и запрещенных зон. Однако в запрещенной зоне аморфных веществ имеются какие-то разрешенные состояния, отчасти подобные обычным локальным уровням в кристаллических твердых телах, связанных, например, с примесями или дефектами. В то же время эксперименты дают основание утверждать, что уровни, расположенные в запрещенной зоне некристаллического материала, могут быть обусловлены не только атомами примеси, но и другими причинами, связанными со структурой данного вещества.  [c.355]

В этих условиях прежде всего необходимо выяснить, какие из понятий, связанных с кристаллом, сохраняют смысл и в применении к неупорядоченным системам. Одно из таких понятий, одинаково пригодное для кристаллических и некристаллических веществ, — это плотность состояний N(E). Оно вводится еще в элементарной теории идеального газа и, как мы видели, широко используется в физике твердого тела. Величина jV( ) d представляет собой число состояний в единичном объеме, допустимых для электрона с заданным спином и с энергией в интервале от Е до E-j-dE. В аморфных веществах состояния могут быть заняты или свободны и произведение E)f E)dE есть число занятых состояний в единичном объеме. Здесь f E) — функция Ферми — Дирака  [c.356]

Выше (см. 17.1) речь шла о естественном двойном лучепреломлении, которое определяется природными свойствами используемых веществ. Однако двойное лучепреломление можно вызвать и искусственно. Действительно, причиной двойного преломления в кристаллах является анизотропия, поэтому следует ожидать, что и некристаллические вещества (жидкие и аморфные), в которых анизотропные свойства созданы искусственно, также должны в той или иной степени обладать двойным преломлением.  [c.63]


Анизотропия среды может быть обусловлена несколькими причинами анизотропией образующих её частиц, анизотропным характером их взаимодействия (диполь-ным, квадрупольным и др.), упорядоченным расположением частиц (кристаллич. среды, жидкие кристаллы), мелкомасштабными неоднородностями (см,, напр.. Текстура). В то же время анизотропные или анизотропно взаимодействующие частицы могут образовывать изотропную среду (напр., аморфные вещества или газы и жидкости, в к-рых изотропия обусловлена хаотич. движением и вращением частиц), А. с, может образоваться под действием внеш. полей, ориентирующих или деформирующих частицы. Даже физ. вакуум во внеш. полях (эл.-магн., гравитац, и др.) поляризуется и ведёт себя как А, с. Физ. поля и вещество искривляют само пространство-время, к-рое приобретает анизотропные гравитац, свойства.  [c.84]

ТВЁРДОЕ ТЕЛО — агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов, к-рые совершают малые колебания около положений равновесия. Различают кристаллич. и аморфные Т. п. Кристаллы характеризуются пространств. периодичностью в расположении равновесных положений атомов (см. Дальний и ближний порядок). В аморфных телах атомы колеблются вокруг хаотически расположенных точек. Согласно классич. представлениям, устойчивым состоянием (с мин. внутр. энергией) Т. т. является кристаллическое. Аморфное тело находится в мета-стабильном состоянии и с течением времени должно перейти в кристаллич. состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется (см. Аморфное состояние. Стеклообразное состояние).  [c.44]

На свойства Т. и. при прохождении электронов через вещество влияют эффекты, связанные с его структурой, а также с вероятностью многократного рассеяния электронов в нём. При Г 100 МэВ за время, необходимое для излучения фотона, электрон проходит большое расстояние и может испытать столкновения с др. атомами. В аморфных веществах многократное рассеяние электронов больших энергий приводит к снижению интенсивности и расширению пучка Т. и, в кристаллах возникает дифракция электронов, в спектре Т. и. появляются резкие максимумы и увеличивается степень его поляризации (рис. 3).  [c.149]

Классификация и основные модели ферромагнетиков. Необходимый признак Ф. вещества — наличие постоянных (не зависящих от внеш. магн. полей) магн. (спиновых или орбитальных, либо тех и других вместе) моментов электронных оболочек у составляющих его атомов (ионов) (Fe, Со, Ni и др.). Однако при конденсации магнитно-активных атомов (ионов) в кристалл или аморфное тело их электронные оболочки часто претерпевают такую деформацию, что кристалл или аморфное тело уже не обладает  [c.295]

Анизотропные материалы обладают различными свойствами в разных направлениях [1—4]. К их числу относятся, например, волокна, древесина, ориентированные аморфные полимеры, материал деталей, получаемых литьем под давлением, волокнистые композиционные материалы, единичные кристаллы и кристаллические полимеры с ориентированной кристаллической фазой. Очевидно, что анизотропные материалы более распространены, чем изотропные. Однако если анизотропия выражена слабо, часто ею можно пренебречь. Для характеристики упругости анизотропных материалов необходимо ввести больше чем два независимых модуля упругости — обычно не менее пяти или шести. Точное число независимых модулей определяется типом симметрии вещества [1—3].  [c.35]

Керамикой называются материалы, полученные при высокотемпературном спекании минеральных порошков. При нагреве исходные вещества взаимодействуют между собой, образуя кристаллическую и аморфную фазы. Керамика представляет собой пористый материал, содержащий ковалентные или ионные кристаллы — сложные оксиды, карбиды или твердые растворы на их основе. Аморфная фаза является стеклом, которое по своему химическому составу отличается от кристаллов. Керамический материал содержит одну или несколько кристаллических фаз отдельные виды керамики совсем не имеют стекла в своей структуре. Как правило, керамика имеет поликристаллическую структуру с прослойками стекла и с беспорядочным расположением зерен и поэтому однородна по свойствам.  [c.46]


Твердые тела, как известно, разделяются на аморфные и кристаллические, Считается, что в аморфных телах, типичными представителями которых является обычное стекло и бакелит, атомы и молекулы расположены хаотически, неориентированно, и потому аморфные тела изотропны, т. е. механические, оптические и электрические их свойства одинаковы во всех направлениях. Характерным линейным размером аморфного вещества является среднее межатомное расстояние. Кристаллические тела, типичными представителями которых являются металлы, напротив, имеют правильную структуру, элементарные частицы их (атомы, ионы) расположены в определенном порядке. Например, железо имеет кубическую решетку. Однако кусок железа представляет собой не кристалл, а поликристаллическое тело, состоящее из зерен, являющихся кристаллами (кристаллитами), размеры которых имеют порядок 0,01 мм и более, т. е. значительно больше межатомных расстояний. Каждый кристаллит является анизотропным, т. е. имеет различные свойства в разных направлениях и потому характеризуется не только размером и формой, но и ориентацией в пространстве, определяемой физическими свойствами. Но и отдельное зерно не может быть взято за основной объем при изучении внутренних напряжений и деформаций в больших телах, главным образом по той же причине, что и атом здесь дело ухудшается еще тем, что формы зерен неправильны  [c.11]

Для перехода от структуры с топологией искривленного трехмерного пространства к структуре материала с топологией в трехмерном пространстве вводят дефекты в виде ряда дисклинационных линий. Присутствие дисклинаций в материале приводит к римановой кривизне кристалла и изменяет его симметрию (рис. 4.5). Лихачев и др. [6] определили строение аморфного вещества как искривленное пространство Римана, что предполагает наличие в аморфных сплавах симметрии 5-го порядка или специфических дисклинаций наклона. На рис. 4.5 сопоставлены структуры идеального кристалла и кристалла с дисклинациями.  [c.128]

Совершенно другая картина наблюдается в аморфной среде, где большими значениями обладают как скорость роста кристалла и, так и частота зародышеобразования J. Действительно, при низких температурах величины J, и возрастают с нагревом пленки, так что вьщеление тепла кристаллизации способствует ее течению. Поэтому с ростом пленки может наступить такая ситуация, когда тепло кристаллизации не успевает отводиться в окружающую среду, и возникает тепловая неустойчивость, обеспечивающая спонтанный переход в режим взрывной кристаллизации [188]. Примеры такого перехода дают процессы кристаллизации в слоях аморфного льда и некоторых органических веществ [182, 184], а также в аморфных ультрадисперсных порошках германия с вкраплениями кристаллической фазы [184, 185]. Исследованию механизма взрывной  [c.206]

Активированными твердыми телами называют тела с термодинамически и структурно нестабильными расположениями элементов решетки, которые по сравнению с идеальным или слегка нарушенным монокристаллом отличаются повышенным значением свободной энтальпии. В связи с этим сознательно отказываются от названия кристалл , так как отклонения от трехмерного периодического расположения элементов решетки в таких кристаллах часто бывают настолько сильны, что достигается степень разупорядоченности, какая имеет место у аморфных веществ.  [c.434]

Для оценки величины энтропии при абсолютном нуле следует учесть максимальную степень неупорядоченности кристаллов. Чем сильнее искажен кристалл дефектами решетки, тем он активнее, тем больше приближается к состоянию неупорядоченности. Это состояние в значительной мере реализуется у аморфного вещества и полностью достигается в идеально аморфном состоянии расплава.  [c.452]

Дипольная поляризация характерна для полярных диэлектриков. Сущность этого вида поляризации заключается в повороте (ориентации) в направлении электрического поля молекул, имеющих постоянный электрический момент (рис. 15.3, в). Более строго дипольную поляризацию можно объяснить не как непосредственный поворот полярных молекул под действием внешнего электрического поля, а как внесение этим полем некоторой упорядоченности в положения полярных молекул, непрерывно совершающих хаотические тепловые движения. Следовательно, дипольная поляризация по своей природе связана с тепловыми движениями молекул, и на нее оказывает существенное влияние температура. Дипольная поляризация в простейшем виде проявляется в газах, жидкостях и аморфных вязких веществах в кристаллах (при температурах ниже точки плавления) диполи молекул обычно заморожены , т. е. закреплены на своих местах и не могут ориентироваться. Однако дипольная поляризация все же наблюдается в некоторых кристаллических телах с неплотной упаковкой молекул, например в водяном льде и других кристаллах с водородными связями, где переориентация диполя заключается в перескоке протона из одного положения в другое. В полимерах может иметь место поворот (или переброс) не целых молекул, а отдельных их частей ( сегментов ).  [c.116]

Электрические характеристики диэлектриков. Класс Д. охватывает большое кол-во веществ в твёрдом, жидком и газообразном состояниях. Твёрдыл<и Д. явля-ются мн. кристаллы и аморфные вещества (стёкла, смолы). Все газы состоят в основном из нейтральных атомов и молекул и поэтому в обычных условиях не кроводят электрич. тока, т. е. являются Д. С повышением темн-ры Т атомы и молекулы ионизируются и газ превращается в плазму.  [c.695]

Расположение атолюв в жидкостях и аморфных веществах нельзя считать некоррелированным. Радиальная ф-ция распределения, описывающая ср. число соседей на заданном расстоянии от случайно выбранного атома, имеет в этих веществах неск. чётко выраженных максимумов, отражающих корреляцию в расположении соседей в пределах неск. координац. сфер. На больших расстояниях максимумы исчезают. Ближний порядок определяется взаимодействием соседних атомов и зависит от характера связи между ними. Напр., в ряде аморфных металлов ближний порядок хорошо описывается в рамках модели твёрдых шаров со случайной плотной упаковкой. Простейшую реализацию этой модели можно получить, если положить в банку большое кол-во одинаковых твёрдых шаров, потрясти их, а затем сдавить. Ср. число ближайших соседей в такой модели близко к 12. Для атомов с ковалентным типом связи (типичные полупроводники) характерна фиксация углов между связями. Так, в аморфных Ge и Si (см. Аморфные и стеклообразные полупроводники) четыре ближайших соседа расположены в вершинах тетраэдра, в центре к-рого находится исходный атом, т. е. точно так же, как в соответствующих кристаллах. Однако, в отличие от ковалентных кристаллов, соседние тетраэдры повёрнуты друг относительно друга на случайные углы, так что дальний порядок отсутствует.  [c.342]


Явления Д. в твердых телах имеют огромное значение в молекулярной физике и технологии металлов и тесно связаны с наблюдаемыми в них молекулярными процессами (установление термодинамич. равновесий в твердых растворах при кристаллизации, рекристаллизация, возможная адсорбция одного из компонентов сплава на внутренних или внешних поверхностях раздела). Сварка и спайка металлов в известной степени связана с Д. На Д. углерода в сталь основан процесс lfe-ментации (см.) — поверхностного науглероживания (железных или стальных) изделий, т. е. повышения содержания углерода в наружном слое, напр, деталей машин, инструментов (обычно до 0,9%), что позволяет после закалки создать изделия с твердым наружным слоем и мягкой, вязкой сердцевиной. Все большее значение приобретает цементация железа и стали другими металлами алюминием (калоризатц1Я, или алитирование), хромом (хромизация), вольфрамом, кремнием, бором, цинком. Все ати процессы основаны на Д. соответствующего данного вещества — металла — в железо. Сюда же относится и азотирование (азотизация), связанное с (отчасти химической) окклюзией азота наружным слоем железа и последующей Д. в металле. Азотирование ведет к весьма сильному повышению твердости наружного слоя. Обратный процесс обезуглероживания (при производстве ковкого чугуна) — обратная цементация — такн е основан на Д. С диффузией в твердых телах тесно связан вопрос о подвижности ионов в кристаллах и аморфных телах (стеклах) при электролитич. переносе. Д. в кристаллич. решетке зависит от направления и резко возрастает с темп-рой.  [c.461]

Электронная упругая поляризация является наиболее общим видом поляризации. Она наблюдается во всех диэлектриках независимо от их агрегатного состояния (газ, жидкость, твердое тело) и структуры (кристалл, аморфное вещество). Атомы, из которых состоит диэлектрик, под действием внекшего электрического поля превращаются в электрические диполи вследствие того, что  [c.278]

НОМ И кристаллическом кремнии практически одинаковы. Вторая координационная сфера в аморфном кремнии определена менее четко значение здесь существенно больше, чем в кристаллическом материале. Наиболее ярким отличием структуры аморфного кремния от кристаллическоглэ является полное исчезновение третьего координационного максимума кривой радиального распределения, присутствующего на соответствующей зависимости р(г) для кристалла. Другими словами, структура аморфного кремния характеризуется таким же ближним порядком, что и структура кристалла, однако область, где строгий ближний порядок сохраняется, ограничена лишь первой координационной сферой. Аналогичная ситуация имеет место и в других аморфных веществах.  [c.354]

Своеобразие оптического поведения кристаллов определяется их анизотропией. Существует два рода кристаллов — твердые и жидкие. Различие между ними сводится к тому, что в твердых кристаллах частицы (атомы, ионы, молекулы) во всех трех измерениях расположены упорядоченно. Твердый кристалл обладает кристаллической рещеткой. У жидких кристаллов такой решетки нет. В жидкокристаллическом состоянии обнаруживаются структурные свойства, промежуточные между свойствами твердых кристаллов и жидкостей. В таком состоянии могут находиться некоторые вещества в определенном, характерном для каждого из них температурном рнтервале. При более низких температурах вещество представляет собой твердый кристалл, а при более высоких оно переходит в обычную аморфную жидкость.  [c.30]

Оптическая активность в аморфных веществах. Схема наблюдения вращения плоскости поляризации в аморфных веществах (сахар, камфара, патока, никотин и др.) остается такой же, как и в кристаллах (см. рис. 20.1), но только вместо кристалла между поляризаторами помещается кювета с оптически активным веществом. В настоящее время известно очень много оптически активных веществ, обладающих весьма различной вращательной способностью, от едва заметной до очень больщой (например, никотин в слое толщиной 10 см поворачивает плоскость поляризации желтых лучей на 164°).  [c.72]

Основным методом изучения структуры аморфных материалов является метод дифракции рентгеноваких х лучей, электронов и нейтронов [67]. В главе 7 при рассмотрении вопросов дифракции излучения на кристаллах указывалось, что при рассеянии на неограниченном кристалле возникают узкие дифракционные максимумы, положение которых определяется в соответствии с формулой Вульфа -— Брэгга межплоскостными расстояниями, а ширина — размером кристалла,. В весьма грубой модели картину дифракции на аморфных материалах можно рассматривать как происходящую на совокупности ультрамалых беспорядочно ориентированных кристаллитов (см. рис. 12.2, а), и поэтому узкие дифракционные максимумы при переходе к рассеянию аморфными материалами должны трансформироваться в широкие диффузные гало. Такой подход позволяет качественно объяснить характер дифракционной картины от аморфных веществ, однако даже при исследовании структуры аморфных материалов с помощью наиболее высокоразрешающего метода — дифракции электронов — узкие дифракционные максимумы обнаружить не удалось. По этой причине модель аморфных материалов как ультрамикрокристал-лических веществ далеко не всегда считается справедливой. В качестве более корректной модели сейчас все чаще принимается модель непрерывного распределения сферических частиц, характеризующихся почти плотной упаковкой (иначе — случайной сеткой  [c.277]

У некоторых кристаллических веществ, например у щелочно-галоидных кристаллов и кристаллов, содержащих ноны титана, висмута, стронция, существует ионная релаксационная поляризация. Появление слабо связанных ионон II электронов часто обусловлено дефектами кристаллической решетки, такими, как примесные ионы, пустые узлы и межузельные ионы, дислокации. В аморфных телах слабо связанные ионы возникают из-за так называемой неплотной упаковки частиц. Такие ионы существуют в стеклах.  [c.147]

Просмотр шлифов в поляризованном свете — это важнейшее вспомогательное средство при исследовании включений и различии оптически изотропных кристаллов от оптически анизотропных. Изотропность определяется строением кристалла. Все вещества, кристаллизующиеся в кубической системе, и аморфные материалы являются оптически изотропными. Все вещества, кристаллизующиеся в других системах, относятся к оптически анизотропным материалам. Изотропные вещества, т. е. большинство металлов, дают одинарное лучепреломление и не изменяют плоскости поляризации плоскополяризованного света, так что наблюдаемое поле при рассмотрении со скрещенными николями (+Л/) остается темным и освещенность незначительно изменяется при повороте объектного столика. Оптически анизотропные кристаллы, например бериллия, кадмия, магния, титана, цинка, а также пластинчатого и коагулированного графита, напротив, дают двойное лучепреломление. Они соответственно их кристаллографической ориентации разлагают плоскополяризованный свет на две взаимно перпендикулярные поляризованные компоненты. Яркость света увеличивается в зависимости от положения оси кристалла к плоскости колебания анализатора при скрещенных николях. Интер металл иды цветных металлов, кроме йнтерметал-лидов, образующихся на основе алюминия, кремния, свинца и AlSb, оптически различаются благодаря тому, что во время поворота объектного столика на 360 они четыре раза попеременно попадают в светлое и темное поле, при этом в отдельных случаях наблюдается окрашивание.  [c.13]


ПАРАКРИСТАЛЛ — молекулярный кристалл с перемежающимися кристаллическими и аморфными областями ПАРАМАГНЕТИЗМ (есть свойство вещества, помещенного во внешнее магнитное поле, намагничиваться в направлении, совпадающем с направлением этого поля, если в отсутствие внешнего магнитного поля это вещество не обладало упорядоченной магнитной структурой Паули проявляется в металлах и полупроводниках и образуется спиновыми магнитными моментами электронов проводимости ядерный образуется магнитными моментами атомных ядер) ПАРАЭЛЕКТРИК— неполярная фаза сегнетоэлектрика, возникающая выше температуры фазового перехода ПЕРЕОХЛАЖДЕНИЕ— охлаждение вещества ниже температуры его равновесного перехода в другое фазовое состояние ПЕРЕХОД [квантовой системы (безызлучательный характеризуется изменением уровня энергии атома или молекулы без поглощения или испускания фотона вынужденный осуществляется понижением уровня энергии под действием внешнего излучения скачкообразный возникает самопроизвольно или вследствие  [c.258]

Наряду с упругим рассеянием, Д. р. р. л. может быть обусловлено неупругими процессами, сопровождающимися возбуждением электронной подсистемы кристалла, т. е. комптоновским рассеянием (см. Комптопа эффект) и рассеянием с возбуждением плазменных колебаний (см. Плазма твердотельная). С помощью расчётов или спец, экспериментов эти составляющие можно исключить, выделив Д. р. р. л. на несовершенствах кристалла. В аморфных, жидких и газообразных веществах, где отсутствует дальний порядок, рассеяние только диффузное.  [c.691]

Крнсталлич. состояние П. во многом сходно с кристаллит. состоянием низкомолекулярных веществ, однако его образование в П. осложняется из-за большой длины макромолекул, и, как правило, кристаллизующиеся П, образуют лишь частично крнсталлич. фазу, в к-рой крнсталлич. области разделены обширными аморфными прослойками с перепутанными цепями.  [c.20]

П. р. для аморфных веществ и жидкостей, где существует лишь ближний порядок в расположении атомов, не имеет таких ярких фпз. проявлений, как в кристаллах. П. р., как и поляризуемость в др, диапазонах эл.-магн. спектра, является универсальной характеристикой диэлектрич. свойств среды. С её помощью возможно описание всех оптич. явлений в рентг. диапазоне, и прежде всего дифракции.  [c.75]

РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ (рентгеноструктурный анализ) — методы исследования атомного строения вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентг. излучения. Р. с. а. кристал-лич. материалов позволяет устанавливать координаты атомов с точностью до 0,1—0,01 нм, определять характеристики тепловых колебаний этих атомов, включая анизотропию и отклонения от гармония, закона, получать по эксперим. дифракц. данным распределения в пространстве плотности валентных электронов на хим. связях в кристаллах и молекулах. Этими методами исследуются металлы и сплавы, минералы, неор-ганич. и органич. соединения, белки, нуклеиновые кислоты, вирусы. Спец, методы Р. с. а. позволяют изучать полимеры, аморфные материалы, жидкости, газы.  [c.369]

РЕШЕТОЧНАЯ ТЕПЛОЕМКОСТЬ — теплоёмкость твёрдого тела, обусловленная атомной подсистемой, в частности кристаллич. решёткой. Р. т. является частью теплоёмкости твёрдого тела. Термин Р. т. может относиться не только к идеальным кристаллам, но и к кристаллам с дефектами решётки или примесями, к некристаллич. твёрдым телам (аморфным веществам, стёклам).  [c.390]

В 1973 г. в некоторых научных журналах появился ряд статей, предсказывавших большое будуш,ее аморфным металлам. Эти статьи можно было бы объединить под таким общим заголовком Лабораторной любознательности уже достаточно . С тех пор прошло около десяти лет, а за это время аморфные металлы широко проникли во многие области науки и проявили себя как новые перспективные материалы с самыми разнообразными возможностями для практического использования. Столь быстрый прогресс — это и веление, времени, и отражение тех надежд, которые всегда связаны с появлением новых материалов, обладающих, к тому же, уникальными свойствами. До недавних пор главный девиз науки о металлах звучал как Металлы — это кристаллы , т. е. вещества, имеющие закономерно упорядоченную структуру. Поэтому не будет преувеличением сказать, что появление аморфных металлов, где расположение атомов не упорядоченно, внесло большой вклад в систему знаний о металлах вообще, существенно изменив наши представления о них. Неудивительно, что металлы, обладающие крайне беспорядочными атомными конфигурациями, разительно отличаются по своим свойствам от совершенных кристаллов, где действуют ограничения, вызванные существованием симметрии.  [c.23]

Расчеты коэффициентов теплопроводности позволяют отметить основные закономерности безотносительно к а)бсояютной точности их значений [61]. Для повышения теплопроводности динаса выгодно иметь закристаллизовавшийся черепок с крупными порами. Для получения же более низкой теплопроводности выгодно иметь динас с очень тонкими порами. Оба вывода справедливы при относительно высоком содержании кристаллов (кристалл стекловидное вещество = 4 1). При возрастании оодержа-ния аморфной фазы (кристалл стекловидное вещество =1 4), имеющей более низкую теплопроводность, чем кристаллы, относительная величина кристаллов и нор не имеет значения, так как кристаллов очень мало.  [c.367]

Линейные коэффициенты расширения и сжимаемости анизотропны и находятся в тесной связи с симметрией кристалла. Если, например, нагревать или сжимать кристаллический шар и измерять при изменении условий коэффициенты а и х по различным направлениям, то наблюдается искажение формы кристаллов с низкой симметрией. Только у аморфных веществ и кристаллов кубической сингонии шар сохраняет свою форму у кристаллов более низкой симметрии с двумя различными линейными коэффициентами расширения а и а[ он превращается в эллипсоид вращения, с тремя различными линейными коэффициентами расширения а, а , а —-в трехосный эллипсоид. Соответствз ющая закономерность справедлива и для коэффициента %. Связь линейных коэффициентов с кристаллической структурой  [c.39]

Интерпретация дифракционных картин от веществ, не обладающих столь высокой степенью упорядоченности, как кристаллическая решетка, не всегда проста. Как мы увидим ниже, близкие по характеру картины дают и очень маленькие кристаллы, и раз упорядоченные текстуры, и некоторые другие виды агрегатов мо.чекул. По мере увеличения беспорядка дифракционные картины характеризуются все более размытыми рефлексами, и истинно аморфные вещества дают картину из нескольких диффузных колец — ореолов.  [c.83]


Смотреть страницы где упоминается термин Кристаллы и аморфные вещества : [c.347]    [c.281]    [c.652]    [c.92]    [c.69]    [c.209]    [c.286]    [c.432]    [c.47]    [c.156]   
Смотреть главы в:

Введение в физику твердого тела  -> Кристаллы и аморфные вещества



ПОИСК



Аморфное юло



© 2025 Mash-xxl.info Реклама на сайте