Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Масса и энергия. Единицы измерения

Масса и энергия. Единицы измерения  [c.26]

Как известно, по измерению разницы между массой того или иного атомного ядра и суммой масс образующих его протонов и нейтронов можно вычислить энергию связи нуклонов в ядре. Ниже мы приводим наиболее употребительные приближенные соотношения между единицами массы и энергии  [c.320]

Конечной целью процесса измерения, как известно, является сравнение данного значения измеряемой величины с некоторым ее значением, принятым за единицу. Однако строго говорить о непосредственном сравнении можно лишь при измерении линейных размеров массы, времени и некоторых других величин. Многие физические величины не могут быть непосредственно сравнены с единицей измерения, а для целого ряда величин (например, секундных расходов, мощности или энергии) единица измерения вообще не может быть вещественно воспроизведена и использована в условиях проведения исследований. Поэтому процесс измерения в основе своей связан с преобразованием измеряемой физической величины в другую величину, сравнимую с единицей измерения.  [c.88]


Пользуясь формулой (1.4), можно по массе определять энергию и наоборот. В нерелятивистском макроскопическом мире энергии и массы измеряются разными методами, потому что химические, тепловые, электрические и другие макроскопические формы энергии обладают ничтожными массами, не доступными никаким методам взвешивания. В физике атомного ядра масса, создаваемая энергией ядерных сил, уже достаточно велика, чтобы ее можно было обнаружить методами, специфичными для измерения масс. Поэтому энергию ядерных сил выражают как в энергетических единицах (МэВ), так и в массовых (атомная единица массы). В физике элементарных частиц массы большинства частиц измеряются через энергии на основе соотношения (1.4). Поэтому в современных таблицах массы частиц приводятся всегда в энергетических единицах (МэВ). Переход к энергетическим единицам здесь не является прихотью, а обусловлен тем, что при столкновениях частиц высоких энергий происходит рождение и взаимопревращение частиц. Необходимая же для таких процессов энергия определяется как раз соотношением (1.4). Если в таблице для массы элементарной частицы — нейтрального пиона л — стоит цифра 135 МэВ, то это и есть энергия, необходимая для его рождения. А если в таблице поставить массу 2,4-10- г, то ее каждый раз надо будет пересчитывать на энергию по формуле (1.4).  [c.12]

При изучении механических явлений достаточно ввести только три независимые основные единицы измерения—для длины, массы (или сипы) и времени. Этими единицами можно обойтись также и при изучении тепловых и даже электрических явлений. Из физики известно, что размерности тепловых и электрических величин можно выразить через L, М и Т. Например, количество теплоты и температура имеют размерность механической энергии. Однако на практике во многих вопросах термодинамики и газовой динамики принято выбирать единицы измерения для количества теплоты и температуры независимо от единицы измерения механической энергии. Для измерения температуры единицей служит градус Цельсия, для измерения количества теплоты—калория. Эти единицы измерения устанавливаются опытным путём, независимо от единицы измерения для механических величин.  [c.17]

Рябушинский сделал следующее замечание. Так как количество тепла и температура имеют размерность энергии (в кинетической теории газов температура определяется как средняя кинетическая энергия молекул в хаотическом движении), то за основные единицы измерения можно взять только единицы измерения для длины, времени и массы. Тогда размерности определяющих параметров будут  [c.55]


Биологический эффект зависит от вида излучения и условий облучения. Так, в случае альфа-излучения, если радиоактивное вещество не попало внутрь организма, указанная экспозиционная доза не окажет практически никакого биологического воздействия. Мерой воздействия ионизирующего излучения на вещество служит поглощенная доза —средняя энергия, переданная излучением единице массы вещества. В старой системе единицей измерения поглощенной дозы служил рад (1 рад=0,01 Дж/кг). В СИ в качестве единицы поглощенной дозы принят грэй (Гр), при этом I Гр==1 Дж/кг. Расчет поглощенной дозы, однако, даже в том случае, если известны все данные о радиоактивном источнике, является непростой задачей.  [c.340]

Из последней формулы, в частности, вытекает, что если перейти при измерениях длины от сантиметров к метрам, а при измерении массы от граммов к килограммам и сохранить единицу времени секунду, то единица кинетической энергии увеличивается в (100) 1000 = 10 раз.  [c.73]

Так как за счет использования ВЭР сокращается расход топлива (технологического или энергетического), то нормы и удельные показатели возможного использования (возможной выработки) ВЭР должны быть выражены не в единицах объема или массы, а подобно нормам расхода топлива или энергии —в единицах измерения энергии. Так, для горючих видов ВЭР, которые потребляются как топливо,— в единицах условного топлива. Для тепловых ВЭР, где в настоящее время преобладает теплотехническое направление утилизации (выработка пара, горячей воды), нормы следует выражать в тепловых единицах.  [c.242]

Следуя логике данных рассуждений, можно сказать, что и в случае химической реакции также должна выделяться энергия, вызванная разницей между суммарной массой молекул углерода и кислорода и массой молекулы углекислого газа. Это действительно так, однако в данном случае дефект массы составляет всего лишь а. е. м., тогда как эта же величина для дейтрона равна 0,00234 а. е. м. Данный пример еще раз иллюстрирует, что ядерные силы в миллион раз превосходят химические, как это и следует из соответствующей разницы в энергиях, выделяемых за счет дефекта массы. Конечно, выделяемая ядерная энергия, выраженная в атомных единицах массы, кажется также незначительной, поскольку, как мы помним, значение переводного множителя в формуле Эйнштейна чрезвычайно велико. Однако все меняется, если использовать в качестве единиц измерения электрон-вольты Одна атомная единица массы равна 931 МэВ, следовательно, энергия, освобождающаяся при образовании ядра дейтерия и соответствующая дефекту массы 0,00234 а. е. м., равна  [c.36]

В физических исследованиях в качестве основных единиц измерения принимаются единицы длины, времени и массы. В технических расчетах до последнего времени чаще всего пользуются единицами измерения длины, времени и силы. В этом случае единица массы, как и единицы скорости, энергии, площади, вязкости и другие являются производными.  [c.5]

Основные величины не зависимы друг от друга, но они могут служить основой для установления связей с другими физическими величинами, которые называют производными от них. Вспомним уже упомянутую формулу Эйнштейна, в которую входит основная единица — масса, а энергия — это производная единица, зависимость между которой и другими единицами определяет данная формула. Основным величинам соответствуют основные единицы Измерений, а производным — производные единицы измерений.  [c.493]

В качестве целевой функции иногда принимаются зависимости массы, мощности, вида энергии коэффициента полезного действия, нагрузки и другие критерии в технических единицах измерения.  [c.131]

Многие калориметры могут измерять как энергию, так и мощность. Например, калориметры непрерывного потока предназначены для измерения средней мощности от непрерывно действующих источников или от импульсных источников, характеризующихся высоким коэффициентом заполнения (произведение ширины импульса на частоту повторения близко к единице). Другие же калориметры предназначены для определения полной энергии импульса путем измерения повышения температуры в результате поглощения энергии излучения в поглотителе с известной массой и теплоемкостью. Как и всегда в калориметрии, потери тепла в результате теплопроводности, отражения, излучения и конвекции должны быть сведены к минимуму или тщательно проконтролированы, а также должны быть известны постоянные времени, от которых зависит установление теплового равновесия.  [c.113]


Способность элемента системы накапливать тепло характеризуется произведением массы элемента на его удельную теплоемкость и обычно измеряется в килокалориях, деленных на градус Цельсия. Способность элемента накапливать массу может быть выражена при помощи различных единиц измерения, например в кубических метрах жидкости на метр высоты резервуара и т. д. Подобные емкости аналогичны электрическим емкостям, однако следует подчеркнуть, что их величина определяется скоростью измерения энергии или массы [см. уравнение (3-1)], в то время как величина электрической емкости обычно определяется отношением величины полного заряда к напряжению. Величина электрической емкости обычно не зависит от напряжения. Величины емкостей, аккумулирующих тепло либо массу, часто зависят от 0 и не могут быть подсчитаны по величине отношения Q/Q.  [c.37]

Эта система единиц впервые была установлена в 1919 г. во Франции, где была принята в законоположении о единицах измерений. В 1927—1933 гг. система МТС была рекомендована советски.ми стандартами на механические единицы. Выбор тонны в качестве основной единицы. массы казался удачным, так как достигалось соответствие между единицами длины и объема, с одной стороны, и единицей массы — с другой (с точностью, достаточной для большинства технических расчетов, 1 т соответствует. массе 1 м воды). Кроме того, единица работы и энергии в этой системе (килоджоуль) и единица мощности (киловатт) совпадали с соответствующими кратными практическими электрическими единицами.  [c.30]

В международной системе единиц измерения — системе СИ (SI) — приняты 6 основных, 2 дополнительных и 85 производных единиц. Важнейшими из основных являются следующие единица длины (линейного размера) — метр (м) единица времени — секунда (с) единица массы — килограмм (кг) единица температуры — кельвин (К). Важнейшие производные единицы единица силы, в частности силы тяжести, — ньютон (И) единица давления — паскаль (Па) единица энергии., работы, теплоты—джоуль (Дж)  [c.4]

В состав Международной системы единиц входят шесть основных единиц —метр, килограмм, секунда, ампер, градус Кельвина и свеча, две дополнительных и двадцать семь важнейших производных единиц из различных областей науки. Все основные и большинство производных единиц Международной системы давно известны и получили широкое распространение. В системе СИ четко разграничены единицы массы (килограмм) и силы (ньютон). Измерение механической, тепловой и электрической энергии производится одной универсальной единицей — джоуль.  [c.5]

Метрология — это наука об измерениях, методах достижения нх единства и требуемой точности. Она занимается образованием системы единиц физических величин, разработкой методов и средств измерений, точности измерений, обеспечением однообразия средств измерения и созданием эталонов измерения. В 1960 г. Международной метрологической конвенцией (соглашением), в которой приняла участие наша страна, принята единая Международная система единиц (СИ). В стандарте СТ СЭВ 1052—78 установлены основные единицы СИ (длина — метр, масса — килограмм, время — секунда и т. д.) и производные (сила — ньютон, давление — паскаль, энергия, работа, количество теплоты — джоуль и т. д.). Этими единицами теперь поль-  [c.286]

Показатели качества могут быть абсолютными и удельными (относительными). К абсолютным относятся в основном показатели назначения и некоторые другие. Они представляют собой наиболее важные характеристики создаваемого изделия (производительность, скорость, грузоподъемность, уровень шума и вибрации и др.) и измеряются в единицах измерения, принятых для соответствующего показателя. Удельные показатели качества применяются для оценки использования сырья, материалов, энергии, вредных воздействий изделия, показателей надежности. Они определяются отношением оцениваемого показателя к одному из основных показателей назначения. Например, указывают удельный расход сырья (кг/кг), который представляет собой отношение массы затраченного сырья к массе выпущенной годной продукции в один и тот же период времени. Удельная материалоемкость (кг кг/ч кг кг/год) представляет собой отношение массы изделия к производительности или к годовому выпуску. Удельный расход топлива для транспортных машин (л/100 км) пред-  [c.29]

Для характеристики рентгеновского и гамма-излучения принято также понятие экспозиционной дозы, как количественная характеристика, основанная на ионизирующем действии этих излучений в сухом атмосферном воздухе, а характеристика выражается отношением суммарного электрического заряда ионов одного знака, образованного излучением, поглощенным в воздухе, к массе этого воздуха. За единицу измерения экспозиционной дозы принят кулон на килограмм (Кл/кг). Допускается также применение внесистемной единицы рентген 1Р = 2,57976-10" Кл/кг. Экспозиционная доза в 1Р создает при нормальных условиях в 1 см ионы, несущие одну электростатическую единицу количества электричества каждого знака (2,08-10 пар ионов). Поглощенная энергия в воздухе, соответствующая экспозиционной дозе 1Р, будет равна 0,88-10 Дж/кг.  [c.80]

Расчеты показывают, что цена топлива, затраченного за срок службы трактора на транспортирование 1 кг дополнительной массы рассматриваемой и сопряженных деталей, в 3 - 6 раз превышает цену 1 кг дополнительной массы деталей, а за срок службы грузового автомобиля - в 6 - 10 раз. Это следует учитывать в обобщенном виде посредством использования коэффициентов т с, т э, показывающих соответственно среднее изменение массы сопряженных деталей на единицу измерения массы рассматриваемой детали, среднюю себестоимость (или цену) единицы массы сопряженных деталей и стоимость расхода энергии (горючего) на транспортирование дополнительной массы сопряженных деталей, возникающей от применения ближайшей большей унифицированной детали вместо расчетной.  [c.415]


Посмотрим теперь, что будет, если выполняются оба эти знакомые нам неравенства. Мы можем их сложить при условии, что они записаны в одинаковых единицах. Внутренняя диссипация б имеет размерность скорости изменения во времени энергии единицы массы, и мы будем записывать неравенство Фурье в величинах той же размерности, в частности не зависящих от единицы измерения температуры. С помощью (2) мы можем тогда записать неравенства Планка (4) и Фурье (8) в виде  [c.434]

Величины, численные значения которых зависят от выбранной системы единиц измерения называются размерными величинами (расстояние или длина, время, масса, энергия, температура и т.д.).  [c.28]

Число основных единиц измерения может быть различным. При изучении механических явлений или тепловых явлений совместно с механическими обычно достаточно установить три основные единицы измерения. Например, в системе GS за основные единицы выбирают единицу длины (символ L), массы (символ М) и времени (символ Т). Тогда единицы измерения таких величин, как температура и количество тепла устанавливают, исходя из функциональных связей между тепловыми и механическими величинами. Единица измерения температуры, которая упоминалась выше, — электронвольт — возникает при измерении температуры в единицах энергаи. В электронвольтах обычно измеряют энергаю светового кванта Сф = Av, где v — частота  [c.29]

При теоретических исследованиях и рсшеиип практических задач теоретической механики встречаются величины двух видов скалярные и векторные. Скаляром называется величина, характеризующаяся при выбранной единице измерения только численным значением (например, температура, масса, энергия, моменты инерции и т. д.). Вектором называется величина, определяемая помимо измеряющего ее в определенпых единицах числа еще своим направлением в пространстве. Типичными примерами векторных величин являются сила, скорость точки, ускорение точки и т. д. Мы считаем необходимым напомнить читателю основные полоя ения векторной алгебры и векторного анализа, учитывая, что ряд положений векторного анализа, 1 спользуемых в настоящем учебнике, выходит за рамки обычных учебных программ и что применение векторного исчисления к изучению механических явлений упрощает исследование, делает его более естественным и наглядным.  [c.319]

Перед тем, как перейти к рассмотрению единиц измерения внутренней энергии, тепла и работы, заметим, что в практической теплотехнике до сих пор наряду с системой СИ широко используется система МКГСС и связанные с ней внесистемные единицы. Поэтому в настоящее время нужно уметь пользоваться обеими системами и полезно вспомнить их основные особенности. Принципиальная разница между ними состоит в том, что количество вещества в системе СИ выражается его массой, единицей измерения которой является килограмм (кг), а в системе МКГСС — его весом, единицей измерения которого является килограмм-сила (кгс).  [c.10]

АВТОМОДЕЛЬНАЯ АСИМПТОТИКА в квантовой теории ноля — независимость асимпто-тич. формы амплитуд U сечений процессов взаимодействия элементарных частиц при высоких энергиях и больших передачах импульса (глубоко неупругих процессов, инклюзивных и эксклюзивных процессов, адрон-адронных взаимодех ствий) от размерных ди-намич. параметров, таких как массы частиц, эфф, радиус сильного взаимодействия и др. Единств, переменными, от к-рых зависит А. а., являются безразмерные отношения больших кинематич. инвариантов, характеризующих рассматриваемый процесс (не меняющиеся при выборе единиц измерения энергии и импульса частиц), т, е. автомодельное асимптотич. поведение тесно связано с масштабной инвариантно-стью при высоких энергиях. Автомодельное поведение в физике высоких энергий находится в близкой аналогии со свойством подобия или самоподобия (автомодельности) в задачах газо- и гидродинамики (см. Автомодельное течение), откуда И был заимствован термин (см. также Автомодельность).  [c.18]

Эквивалентная газовая постоянная 270 молярная масса 270 Эксергический к. п. д. 427 Эксергия 220 беспотоковая 223, 420 совершенного газа 233 экстракции 420 и перевода в новое состояние 424 Электрохимические системы 433 Энергия 21 внутренняя 66, 71 доступная 221 единица измерения 65 кинетическая 66, 71 определение 64 альтернативное 65 потенциальная 66, 71  [c.479]

Мерой движения является физическая величина, называемая энергией. Установив меру движения материи, можно сравнивать меладу собой в количественном отношении движения материи различных форм, подобно тому как при помощи меры инертности — массы — мы сравниваем между собой инертность различных по природе тел. Мера двнл<ения — энергия — является величиной скалярной. Можно установить и единицу измерения энергии. Тогда количественно движение данной формы описывается числом этих единиц.  [c.132]

Непосредственное измерение температуры невозможно, так как она характеризует состояние термодинамического равновесия макроскопической системы, является мерой теплового движения, и для ее измерения нельзя ввести эталон, как в случае аддитивных величин (длины, массы, времени). Возможность определения температуры основана на том, что при изменении температуры изменяются внутренние параметры системы, и измерение какого-либо из этих параметров позволяет нс1ходить температуру с помощью уравнения состояния системы [1.5]. Единицы измерений (градусы) и способы их стандартизации выбираются путем соглашения между экспертами. Единица измерения термодинамической температуры (кельвин) определяется как 1/273,16 температуры, соответствующей тройной точке воды. Направление температурной шкалы также выбрано условно считается, что при сообщении телу энергии при постоянных внешних параметрах его температура повышается [1.6].  [c.8]

Размерности физических величин. Физика имеет дело с измеримыми свойствами физических величин. Некоторые из этих величин, например длина, масса, время и температура, рассматриваются как основные, так как они не зависят друг от друга. Другие величины, такие, как скорость, ускорение, сила, теплопроводность, давление, энергия, рассматриваются как производные величины, так как в конечном счете они определяются через основные величины. Математическая физика занимается представлением физических величин посредством чисел и связанными с этим вопросами. Значения физических величии имеют характер отношений, получаемых путем сравнения измеренной ноличины с соответствующей стандартной величиной, произвольно выбранной и качестве единицы, так что число, выражающее результат измерения, зависит I выбора единицы.  [c.14]

Поглощенная доза излучен и я (доза излучеиия) — поглощенная энергия ионизирующе о излучения любого вида, отнесенная к единице массы единицы измерения джоу.1ь на килограмм (дж/кг) в системах СИ и МКСА и эрг на грамм (. ре/г) в системе СГС. Внесистемная единица рад (рад), равный 0,01 дж/кг.  [c.123]

В числителе может стоять и другая единица энергии, например кдж, и тогда количество тепла относят к массе газа 1 кг таким образом в системе МКС единица измерения теплоемкости дж1кг град.  [c.45]


В первом случае основным фактг1ром, определяющим степень изменения свойств данного материала, является интенсивность излучения во втором — суммарное количество энергии ионизируьэщего излучения, поглощенной единицей массы вещества за все время облучения --доз а. Для измерения дозы обычно пользуются несколькими величинами. Рентгеном (р) называется количество энергии или рентгеновского излучения, которое при поглощении ее 1 см сухого воздуха при 0 С и 760 мм рт. ст. приводит (в результате ионизации) к образованию одной электростатической единицы заряда обоих знаков. Физический эквивалент рентгена (фэр) соответствует поглощению одним граммом органического вещества (с плотностью, близкой к единице) приблизительно 94 эрг. Единицей измерения поглощенной энергии служит также рад, соответствующий поглоще]шю одним граммом вещества 100 эрг. Для измерения интенсивности ионизирующих излучений ядерного реактора служит характеристика потока нейтронов п о, определяемая как число нейтронов, проходящих через  [c.430]

Интерпретация фиктивных сил как сил гравитационных решающим образом подтверждается тем, что они имеют существенное свойство, общее с обычным гравитационным полем — их способность всем свободным частицам сообщать одинаковое ускорение независимо от их массы. Первым это свойство для гравитационного поля Земли доказал Галилей. В качестве результата своих экспериментов он смог сформулировать утверждение, что в пустом пространстве все тела падают с одинаковой скоростью . Этот результат выражает просто тот факт, что сила, с которой гравитационное поле земли действует на частицу, пропорциональна инертной массе частицы, определяющей инертность частицы к изменению состояния ее движения. Когда скорость частицы мала по сравнению со скоростью света, ее движение в направлении гравитационного поля описывается уравнением тх = т -, гдет — масса частицы их — ее ускорение в направлении гравитационного поля. Величина есть мера напряженности гравитационного поля и не зависит от массы частицы. Отсюда утверждается, что отношение инертной массы частицы к ее гравитационной массе является универсальной константой, зависящей лишь от единиц измерения. Эта теорема теперь доказана многочисленными экспериментами [84, 85, 240, 286, 209]. Наиболее точные из них — эксперименты Этвеша, Зеемана и Дикке. В результате всех экспериментов были получены одинаковые значения отношений инертной и гравитационной масс. Особенно интересны эксперименты Саутернса и Зеемана с ураном, относительно которого в то время уже было известно, что он обладает большим дефектом массы. В гл. 3 мы видели, что любой энергии Е соответствует инертная масса т = Е с , что подтверждено многочисленными ядерными экспериментами (см. 3.7). Масса, определяемая при помощи масс-спектрографа, очевидно, является инертной массой, и результат Зеемана по-  [c.180]


Смотреть страницы где упоминается термин Масса и энергия. Единицы измерения : [c.433]    [c.19]    [c.62]    [c.171]    [c.12]    [c.39]    [c.5]    [c.317]    [c.153]    [c.397]    [c.398]   
Смотреть главы в:

Введение в ядерную физику  -> Масса и энергия. Единицы измерения



ПОИСК



224 — Единицы измерени

Единица массы

Единицы измерения

Измерение масс

Измерение энергии

Масса и энергия

Масса и энергия. Единицы массы и энергии

Масса — Единицы измерения

Энергия единица измерения

Энергия — Единицы

Энергия — Единицы измерени



© 2025 Mash-xxl.info Реклама на сайте