Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип виртуальных перемещений. Общее уравнение динамики

Аналогично принципу виртуальных перемещений, общее уравнение динамики (19.2) может быть непосредственно использовано дл решения различных конкретных задач. Рассмотрим пример.  [c.432]

ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ И ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ  [c.254]

Уравнение (1) для принципа виртуальных перемещений представляет собой частный случай общего уравнения динамики [см. уравнение (3) на стр. 25]. Однако общее уравнение динамики можно рассматривать как уравнение, выражающее принцип виртуальных перемещений и характеризующее положение равновесия системы, которое получается если к активным силам F, дополнительно причислить фиктивные  [c.37]


Общее уравнение динамики называют также дифференциальным вариационным принципом Даламбера-Лагранжа. Вариационным принцип называется потому, что в (3) входят вариации — виртуальные перемещения. Название дифференциального принцип носит потому, что в нем сравнивается данное положение системы с ее варьированным положением в фиксированный, хотя и произвольный момент времени (синхронное варьирование, согласно п. 12).  [c.104]

Если связи стационарны, то общее уравнение динамики представляет собой следствие принципа виртуальных перемещений и принципа Даламбера.  [c.431]

Траектории действительного движения и варьированные траектории ( окольные пути ) сравниваются при одинаковых начальных и одинаковых конечных положениях (см. (26)) на фиксированном промежутке времени, что не позволяет считать обоснованным применение уравнений движения (27) (а также (29) и (31)), полученных с помощью интегрального принципа, для определения ускорений в моменты времени 0 и 1. В противном случае возникает вопрос являются ли условия фиксированности начального и конечного положений связями, из которых следуют уравнения (26) для виртуальных перемещений, и не требуется ли рассматривать их реализацию с помощью реакций Иначе говоря, является ли область интегрирования, в которой вычисляется действие, замкнутой или открытой При применении общего уравнения динамики (15) этот вопрос не возникает, так как виртуальные перемещения на концах временного промежутка могут быть любыми из множества, определяемого ограничениями, в том числе и не равными нулю. Однако в отличие от силовой механики , действие применяется и при рещении проблем квантования, связанных с проблемой краевых условий. Эти проблемы существуют в механике, математике и физике (вообще в естествознании).  [c.32]

Если в гл. IV и в последующих главах мы, пользуясь методом кинетостатики, составляли затем уравнения равновесия методами геометрической статики, то теперь мы применили принцип виртуальных перемещений, т. е. самое общее теоретическое положение статики общее уравнение динамики можно, таким образом, назвать уравнением Даламбера — Лагранжа.  [c.389]

В предыдущей главе мы показали, что из принципа виртуальных перемещений можно получить все уравнения статики точно так же из общего уравнения динамики можно получить все уравнения динамики. Действительно, применим принцип освобождаемости, отбросим все связи, приложив к точкам системы реакции этих связей, и сообщим системе, которая теперь стала свободной, виртуальное поступательное перемещение вдоль оси Ох на величину бл мы получим тогда из (14.1)  [c.389]


Далее существенный этап развития расчетных математических методов в механике связан с именем Даламбера (1717—1783), предложившего простой и общий метод составления уравнения движения системы. Широкое обобщение аналитические методы получили в трудах Лагранжа (1736—1783), выдвинувшего принцип виртуальных перемещений. Расширение принципа виртуальных перемещений мы находим в трудах русского математика М. В. Остроградского (1801 —1861). Вклад в динамику твердого тела внес С. А. Чаплыгин (1869—1947), а в аэродинамику — Н. Е. Жуковский (1847—1921), который был также выдающимся педагогом, ратовавшим за ясное и четкое выделение физической сущности механических задач и их решение.  [c.29]

Уравнение (4.40) носит название общего уравнения динамики и представляет собой запись одного из самых общих принципов динамического принципа виртуальных перемещений. Динамический принцип виртуальных перемещений, называемый еще принципом Даламбера — Лагранжа, может быть сформулирован так пусть система материальных точек и тел с идеаль-ными связями движется под действием активных сил. Тогда в каждый момент времени обращается в нуль сумма виртуальных работ активных сил и сил Даламбера. Этим истинное движение отличается от всех мыслимых, совместимых со связями и близких к истинному.  [c.195]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Принцип виртуальных перемещений получился у нас как следствие уравнений движения (36.4). Раньше, в 198, мы уже упоминали о том, что можно итти обратным путём — вывести из принщша виртуальных перемещений принцип Даламбера, а уж отсюда притти к уравнениям движения (36.4). Но при таком построении динамики надо или считать принцип виртуальных перемещений за основное положение, или доказать этот принцип, исходя из какого-либо другого положения, принимаемого за основное. Было сделано много попыток дать вполне строгое доказательство принципа виртуальных перемещений, но подобно тому, как при установлении уравнений (36.20) (т. е. точнее говоря, при выводе выражений для реакций) нельзя обойтись без некоторого основного определения или условия (о реакциях идеальных связей), точно так же всякое доказательство рассматриваемого принципа скрыто или явно заключает в себе подобное же условие или допущение по отношению к связям специального характера, а потому, строго говоря, доказательством, т. е. сведением лишь на раньше признанные истины, названо быть не может. Для примера мы рассмотрим в общих чертах ещё два доказательства принципа виртуальных перемещений доказательства Лагранжа и Ампера (Ampere).  [c.380]

Эти уравнения имеют такой же вид, как и в случае ста ционарных связей [ 143, уравнения (169)]. Применяя теперь принцип Даламбера и принцип возможных перемещений, приходим, как былогсказано в 133, к заключению, что сумма элементарных работ заданных сил, при.юженных к материальным точкам данной системы, сил инерции этих точек и реакций связей при всяком возможном (в случае стационарных связей) или при всяком виртуальном (в случае нестационарных связей) перемещении системы равна нулю. Если нестационарные связи являются, как ны предполагаем, совершенными, то сумма элементарных работ реакций этих связей при всяком виртуальном перемещении системы равна нулю, и мы приходим к тому же общему уравнению динамики, которое в 133 мы имели для случая стационарных связей  [c.550]


Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]

Уравнение (1) отличается от общего уравнения динамики, выражающего принцип Даламбера- Чагранжа, только тем, что в нем вместо виртуальных перемещений бГг материальных точек системы пишутся  [c.94]

В гл. XIII мы рассмотрели принцип виртуальных перемещений — сперва в декартовых координатах, а затем перешли к обобщенным координатам так же точно поступим и с общим уравнением динамики (14.2).  [c.400]

Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]


Смотреть страницы где упоминается термин Принцип виртуальных перемещений. Общее уравнение динамики : [c.75]    [c.10]   
Смотреть главы в:

Курс теоретической механики 1973  -> Принцип виртуальных перемещений. Общее уравнение динамики



ПОИСК



70 - Уравнение динамики

Виртуальные перемещения

Динамика общее уравнение

ЛВС виртуальная

Общая динамика

Общие принципы

Общие уравнения

Принцип виртуальных перемещени

Принцип виртуальных перемещени принцип

Принцип виртуальных перемещений

Принцип динамики

Уравнение динамики общее

Уравнение перемещений



© 2025 Mash-xxl.info Реклама на сайте