Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение ЭВМ для графического решения задач

ГЛАВА 14. ПРИМЕНЕНИЕ ЭВМ ДЛЯ ГРАФИЧЕСКОГО РЕШЕНИЯ ЗАДАЧ  [c.157]

Схема счета, отражающая логику графического решения задачи, без применения методов будет иметь вид  [c.233]

Но это условие в точности совпадает с тем, что мы получили из диаграммы Вышнеградского и что, кроме того, выполняется, как было показано выше, предложенным автором применением ортогона Лилля. Это совпадение, конечно, не случайно, и оно наводит на мысль использовать схему перекрестного умножения для нахождения определителей Рауса при графическом решении задачи и для систем, характеристические уравнения которых имеют степени выше третьей. Мы покажем далее, что это действительно возможно, а пока приведем два примера на применение этого чисто алгебраического приема к конкрет-  [c.135]


Одним из наиболее перспективных путей развития технического обеспечения САПР является разработка и применение специализированных процессоров или ЭВМ, ориентированных на выполнение однотипных трудоемких проектных процедур. Выше (стр. 254) говорилось о специализированных ЭВМ для логического моделирования, позволяющих ускорить решение задач моделирования на несколько порядков. Другими примерами специализированных процессоров или ЭВМ для САПР служат трассировочные машины, процессоры для быстрого преобразования Фурье, процессоры графических процедур. Известны и такие специализированные процессоры, как процессоры СУБД, процессоры для ускорения выполнения матричных операций и т. п. Актуальность построения специализированных процессоров для САПР обусловлена наличием трудоемких вычислительных процедур, увеличением размерности решаемых задач, а возможности построения таких процессоров расширяются в связи с появлением СБИС, средств их проектирования и изготовления, с дальнейшим ростом степени интеграции микросхем.  [c.382]

Рассмотрим примеры применения графического метода для решения задач на гидравлический удар.  [c.349]

При решении задач, связанных с изменением состояния водяного пара, применение графического или аналитического метода в большой мере определяется характером процесса. Однако в редких случаях удается определить все необходимые величины одним из этих способов поэтому чаще всего приходится одновременно пользоваться как графическим, так и аналитическим способами. При этом часть параметров пара и величин, подлежащих определению, находят из диаграммы, а остальные определяют аналитическим путем с применением таблиц водяного пара.  [c.187]

Учитывая современные тенденции широкого внедрения ЭВМ во все сферы человеческой деятельности, в книге уделено достаточное внимание аналитическому описанию основных графических операций, что наряду с приведенными сведениями по универсальным и проблемно-ориентированным алгоритмическим языкам, блок-схемами решения основных задач, соответствующей системой обозначений и т. д. должно способствовать решению задач начертательной геометрии с применением ЭВМ. При написании учебника был учтен большой опыт разработки научно-методических основ преподавания курса, приобретенный кафедрой прикладной геометрии МАЙ.  [c.3]

Курс теории механизмов и машин по существу является вводным в специальность будущего инженера и поэтому имеет инженерную направленность, в нем широко используется современный математический аппарат и изучаются практические приемы решения задач анализа и синтеза механизмов — аналитические с применением ЭВМ, графические и графоаналитические.  [c.4]


Можно показать, что использование ЭЦВМ для автоматизации процесса решения задачи графическим методом является не только возможным, но ё ряде случаев и более логичным, чем применение таких машин для автоматизации процесса решения задач аналитическим способом.  [c.225]

Мы приведем далее примеры как графического, так и аналитического способов определения внутренних сил в стержнях ферм. Условимся внутренние силы, возникающие в стержнях ферм, называть усилиями. Простейший способ определения усилий в стержнях ферм основывается на методе вырезания узлов. При применении этого метода можно использовать как графические, так и аналитические способы решения задачи. Рассмотрим здесь графический способ и разъясним сущность метода вырезания узлов на примере мостовой фермы, находящейся под действием нагрузок Р и О (рис. 137).  [c.278]

Спираль Корню и применение ее для графического решения дифракционных задач  [c.166]

На преодоление этих трудностей направлена унификация базовых графических систем, стандартизация взаимодействия между задачами моделирования и задачами отображения моделей. В этом случае появляется возможность создавать прикладные программы, не зависящие от графических устройств, вычислительных систем, языков программирования, области применения. Для решения поставленных задач рабочая группа Машинная графика международной организации по стандартизации (ISO) разработала международный стандарт на графическую базовую систему (GKS). Система GKS определяет набор функций для програм-  [c.26]

В каждом из написанных уравнений содержится по три неизвестных, так что решать их раздельно нельзя. Для графического решения можно воспользоваться методом геометрических мест, аналогичным тому, которым мы пользовались при решении задачи о положениях. Однако его применение, в особенности при определении ускорений, слишком сложно, и потому на его рассмотрении мы останавливаться не будем.  [c.154]

Графоаналитические методы представляют сочетание графических и аналитических приемов решения задач, но имеют ограниченную по сравнению с аналитическими методами область применения.  [c.59]

Благодаря основополагающим работа.м ряда советских ученых Н. Г. Бруевича, Н. А. Бородачева, В. И. Сергеева и др. теория точности оформилась в стройное научное направление. В ней находят применение аналитические, графические и графоаналитические методы решения задач.  [c.111]

Формулы (3-43), (3-46) и (3-47) были получены вне зависимости от того, рассматривалось ли смешение идеальных или реальных газов применение же их к реше-Н1 ю задач для реальных газов усложняется вследствие отсутствия для них простых зависимостей между параметрами состояния. В этих случаях решение задач облегчается применением графического метода (см. сноску на стр. 145).  [c.148]

Итак, синтез плоских и пространственных механизмов по положениям звеньев обычно выполняется по двум или трем положениям с учетом дополнительных условий существование кривошипа, ограничение углов давления, конструктивное размещение отдельных звеньев и т. п. В зависимости от типа механизма и комбинации основных и дополнительных условий синтеза имеется большое количество возможных вариантов задачи синтеза по положениям звеньев. Все варианты этой задачи решаются путем несложных графических построений или применения расчетных формул, получаемых из этих построений методами аналитической геометрии. Применения методов оптимизации или приближения функций при решении задач синтеза механизмов по положениям звеньев обычно не требуется.  [c.387]

На базе развитой теории структуры советские ученые быстро развили и методы кинематического анализа механизмов. Каждому семейству, классу и виду механизмов, установленному разработанной классификацией, соответствовал свой метод кинематического и силового анализа. Кроме геометрического аппарата исследования, широкое применение получил аналитический аппарат, некоторые методы векторного и винтового исчисления и др. Можно утверждать, что к 50-м годам уже не встречалось никаких принципиальных трудностей в решении задач кинематического анализа плоских механизмов. Была создана стройная научная теория кинематического исследования, доступная самым широким кругам инженеров и конструкторов. На основе разработанных методов было произведено большое количество исследований кинематических свойств отдельных механизмов. Были выведены аналитические зависимости, характеризующие взаимосвязи между различными метрическими и кинематическими параметрами плоских и пространственных механизмов, разработаны графические и графо-аналитические приемы определения этих параметров, построены и рассчитаны графики, номограммы, атласы и таблицы. Все это позволило инженерам и конструкторам производить необходимый выбор того или иного механизма, с помощью которого можно было осуществить требуемое движение.  [c.27]


В работе [4] предложен графоаналитический метод оптимизации параметров четырехзвенника. Однако практическое применение метода затруднено необходимостью эвристического поиска решения с одновременным большим количеством аналитических вычислений и графических построений при использовании ряда номограмм. Указанный подход к решению задачи обусловлен отсутствием ключа к силовому синтезу — возможности определения углов положения стрелы, при которых достигается максимальное усилие гидроцилиндра [5, с. 135].  [c.61]

Современная теория механизмов опирается не на правила и приемы, полученные эмпирическим путем наоборот, в настоящее время удалось разработать ее теоретические основы и получить ряд практически пригодных методов, которые опираются главным образом на основные геометрические положения. Для науки о синтезе механизмов естественно искать методы решения задач при помощи геометрии, в противоположность науке о теплоте, теории обтекания, сопротивлению материалов, теории колебаний, в которых используются главным образом дифференциальные уравнения. Графические методы, применяемые для нахождения скоростей и ускорений, а также для определения геометрических мест шарнирных точек и размеров звеньев механизма, оказались очень удобными для конструкторов и способствовали тому, что за последние годы научные методы в области синтеза механизмов получили широкое применение на практике.  [c.11]

В массовом производстве при установившейся номенклатуре программы наиболее распространённым является метод расчёта заданий по нормам задела (см. выше). Однако в период перехода на выпуск новых изделий, а также в период первоначального развёртывания производства вполне рационально применение метода комплектовочных номеров. В данном случае целесообразно использовать графический метод определения комплектовочных номеров по переделам. Для этого на основе нарастающей кривой планового выпуска готовых изделий строятся, исходя из нормального опережения, соответствующие кривые для выпуска и запуска деталей по переделам, как это показано на фиг. 5. Наиболее правильное решение задачи этим методом требует разработки отдельных графиков для разных групп деталей. На основе подобного графика размеры месячных заданий определяются весьма просто. На-  [c.160]

Как и прежде, будем применять диаграмму энтальпия — состав. Укажем, что при температурах воды и воздуха, не намного превышающих обычный атмосферный уровень, задача оказывается слишком простой, чтобы оправдать применение графического метода. Рекомендуемые приемы решения подобных задач будут изложены в 7-5.  [c.325]

Таким образом, с помощью геометрического преобразования (9-43) мы снова получим уравнение Лапласа. Следовательно, истинный физический случай можно представить как фиктивный изотропный в преобразованных координатах. Использование этого приема при применении графического метода решения задачи о двумерном течении в анизотропной среде будет описано ниже, в п. 9-3.3.  [c.200]

Наиболее эффективное применение анизотропных материалов в инженерном деле может быть достигнуто путем решения задачи согласования свойств материала с требуемым в данной конструкции распределением жесткости и прочности. Подбор материала с нужными конструктору свойствами требует информации об анизотропии этого материала, что облегчается графическим представлением.  [c.59]

По возвращении в 1852 г. домой Кульман продолжает свою работу инженера-практика на баварских железных дорогах, пока в 1855 г. не получает приглашения занять должность профессора теории сооружений в только что организованном Цюрихском политехникуме. Кульман любил педагогическую работу и все свои силы отдал подготовке курсов, в которых он с особой энергией настаивал на введении графических методов в анализ инженерных сооружений. Построение многоугольника сил и веревочного многоугольника было известно со времени Вариньона ), и они нашли применение у Ламе и Клапейрона в их расчете арок. Понселе ) использовал их в своей теории подпорных стен. Но все эти применения до Кульмана сводились лишь к немногим частным случаям графического решения тех или иных задач строительной механики. Большая заслуга Кульмана заключается в том, что он систематически провел использование графических методов для расчетов конструкций всевозможных типов и составил первое руководство по графической статике ).  [c.235]

В этой главе мы рассмотрим графические методы решения задач статики в том случае, когда все приложенные к телу силы лежат в одной плоскости. Вообще графические методы имеют очень широкое применение в технической практике. Хотя эти методы и менее точны по сравнению с аналитическими, так как точность результата здесь зависит от точности выполнения чертежа, однако  [c.137]

При гидравлическом расчете трубопроводов весьма широко используют графические методы расчета. Применение графических методов значительно облегчает и упрощает решение некоторых сложных задач, а в отдельных случаях (например, при исследовании совместной работы нескольких центробежных насосов на один общий трубопровод) является практически единственно возможным приемом, позволяющим получить искомое решение.  [c.213]

Диаграммы (прямолинейные) равномерных движений, нанесенные на миллиметровую бумагу, дают удобное средство для графического решения задач о скрещивании, настигании и тому подобных явлениях нескольких точек, равномерно двигающихся по одной и той же траектории (экипая и по одной и той же дороге, поезда по тем же или параллельным рельсам). В частности, очень полезное применение эти диаграммы получают в так называемых железнодорожных графиках.  [c.96]

Следует заметить, что все задачи, приведенные в 6-2, можно решить с применением условия равновесия системы сходящихся сил. Причем при решении задач на равновесие системы сходящихся сил можно испо.[1ьзавать те же три метода графический, графо-аналитический и аналитический (метод проекций).  [c.54]


Равновесие произвольной плоской системы сил. Метод последовательного сложения. Если твердое тело находится в равновесии под действием произвольной плоской системы сил, то путем последовательного графического сложения таких сил можно определить з 1ачение неизвестных из условий равновесия. При этом число неизвестных не должно превышать трех для системы сил, приложенных к одному твердому телу, иначе задача будет статически неопределенной. Этот графический метод решения задач целесообразно применять, если общее число сил, действующих на твердое тело, невелико. По сравнению с аналитическим методом решения задач на равновесие плоской системы сил указанный графический способ более нагляден, но его применение при большом числе сил очень громоздко.  [c.123]

Решение значительной части задач конструирования технических объектов (и ЭМУ в этом плане не являетея исключением) может быть упрощено благодаря применению графической формы представления проектной информации. К числу этих задач прежде всего необходимо отнести определение взаимного расположения и формы узлов и деталей, характерное для начальных этапов проектирования. Наглядность графических изображений упрошает действия проектировщиков и в решении других проблем. В то же время всем известна трудоемкость неавтоматизированных графических работ, а при переходе к созданию САПР возникают существенные трудности формального представления и автоматического преобразования графической информации. Действительно, большое количество ограничений, накладываемых на взаимное расположение поверхностей деталей, в полном смысле слова очевидно для проектировщика при наличии эскиза или чертежа, а сложные конфигурации этих поверхностей могут быть получены им с помощью карандаша и других простейших приспособлений. Другое дело, представление всей этой информации в цифровой форме в ЭВМ, где операции по кодированию графических данных предполагают минимум два действия на определение координат каждой характерной точки изображения. Даже простые изображения могут насчитывать многие десятки и сотни таких точек. Еще большие трудности характеризуют решение задач целенаправленного преобразования графической информации, заданной в цифровой форме.  [c.173]

САПР представляют собой человеко-машинные системы, и трудности их практического применения во многом объясняются недостаточным вниманием к вопросам организации взаимодействия человека и ЭВМ в процессе создания САПР. Как и всякое новшество, САПР на пути своего внедрения встречает сопротивление со стороны специалистов-проекти-ровщиков, корни которого в психологической инерции человека. Несмотря на существенное изменение функций проектировщика и способов решения задач в САПР, неизменным должно быть направление на создание системы, наиболее благоприятствующей работе человека. САПР, как, впрочем, и любая автоматизированная система, имеет конечной целью повышение эффективности работы человека, пусть даже за счет снижения эффективности применения другого компонента — ЭВМ. Например, чрезвычайно дорогостоящие системы машинной графики при высоком уровне автоматизации производства с применением станков с числовым программным управлением ориентированы в первую очередь на удобство работы проектировщика, привычного к графическому представлению результатов проектирования, и выполняют поэтому сервисные функции. Для ЭВМ, оперирующих цифровой информацией, графическая форма ее представления неудобна и требует больших объемов памяти, производительных процессоров и специальных программных и технических средств.  [c.281]

Современный уровень науки и техники требует активного использования возможностей вычислительной техники. Актуальность овладения методами решения задач теории механизмов и машин диктуется динамичным развитием машиностроения и возрастанием его роли в развитии народного хозяйства в целом. Поэтому важным этапом подготовки будущих инженеров является приобретение навыков использования вычислительных машин при проведении лабораторных работ и курсового проектирования по ТММ. Возникающие в курсе ТММ задачи довольно часто настолько сложны, что их точное аналитическое решение или оказывается невозможным, или требует большого труда и времени для достижения нужных результатов. Применение вычислительных машин освобождает студентов от выполнения трудоемких расчетов, не требующих специальных знаний, сокращает затраты времени на определение кинематических характеристик графическими методами, значительно сокращает время достижен[1я конкретных практических результатов и позволяет глубже вникнуть в научную специфику решения инженерных задач машиноведения.  [c.7]

Широкое развитие ЭВМ, появление языков программирования высокого уровня, приспособленных для решения инженерных задач (ALGOL, FORTRAN, PAS AL и т. д.), делает возможным перевод ряда классических гидравлических задач повышенной трудоемкости на ЭВМ. Задачи, представленные в предыдущих главах, целесообразно решать с помош,ью микрокалькуляторов и некоторых традиционных графических методов, так как время на составление и отладку простой программы будет одного порядка с временем, затрачиваемым на ее решение с помощью более простых вычислительных средств. По мере усложнения алгоритма решения задач или в случае необходимости проведения массовых однотипных расчетов становится целесообразным проводить работу на микро- и мини-ЭВМ со стандартной структурой. Разумеется, появление ЭВМ позволило ставить и решать задачи такой сложности, которые ранее не могли быть решены, однако мы считаем необходимым в настоящей главе привести достаточно известные типы задач, которые с применением ЭВМ могут быть решены значительно быстрее.  [c.136]

Проаяапвзярована возмохшозть применения серия однофакторных экспериментов и метода математического планирования для оптимизации процесса получения детонационных покрытий. Указано, что на первом этапе оптимизации при использовании нового метода напыления или нового материала из-за большого числа факторов и параметров оптимизации наиболее целесообразно применение графического метода, основанного на проведении серии однофакторных экспериментов. Метод математического планирования рекомендуется применять для оптимизации процесса напыления при решении конкретной технической задачи. Найдены оптимальные значения грануляции напыляемого порошка, соотношения детонирующих газов, глубины загрузки и дистанции напыления при других фиксируемых параметрах. Приведены зависимости степени проплавления порошка, козффициента фильтрации, пористости и высоты неровностей на поверхности покрытия от указанных параметров. Лит. — 7 назв., ил. — 1.  [c.263]

В настоящее время существует много типов регистраторов, обладающих необходимым объемом памяти. Однако в сочетании с требованиями, предъявляемыми к быстродействию АР (время регистрации одного измерения 10 -ч- 10 с), решение задачи существенно усложняется. Использование большинства аналоговых способов регистрации данных для решения задач автоматизации эксперимента затруднено как из-за недостаточно высокого быстродействия, так и из-за сложности ввода аналоговой информации в обрабатывающую ЭЦВМ. Аналоговые регистраторы, обладающие необходимыми скоростью и информационной емкостью, например магнитографы, электрографы и устройства с запоминающими электронными трубками, достаточно сложны и дороги поэтому их применение оправдано прежде всего там, где необходимо регистрировать десятки и сотни миллионов двоичных единиц информации. В этом случае удельная стоимость хранения одного бита информации становится экономически целесообразной. Аналоговые устройства регистрации могут использоваться в АИИС, предназначенных для исследования динамики машин и механизмов, преимущественно как различного рода устройства отображения данных в графической или иной форме, а также в качестве внешних накопителей большой емкости.  [c.22]


Стереоэффект на синтезированных голограммах дает реальные возможности решения задачи визуализации объемных тел, заданных своим математическим описанием, средствами цифровой голографии. Кроме того, он открывает определенные перспективы в реализации голографического объемного телевидения. В голо-графическом телевидении стереоголограммы могут синтезироваться на приемной стороне из видеосигнала изображений разных ракурсов передаваемой сцены. Такая телевизионная система с синтезом голограмм на приемной стороне удобна для применения методов трансформационного внутрикадрового кодирования изображения с целью сокращения избыточности.  [c.126]

В предшествующем параграфе был рассмотрен самый простой метод использования интегральных соотношений для ламинарного пограничного слоя, но расчёты оказались вполне удовлетворительными лишь для тех случаев, в которых продольный перепад давления оказывался либо отрицательным, либо был небольшим положительным. Для больших положительных перепадов давления в пограничном слое он мало пригоден. Кроме того, этот метод требовал графического или численного интегрирования нелинейного уравнения (4.17) для каждого распределения скорости внешнего потока вдоль пограничного слоя. Эти два обстоятельства и побуждали многих исследователей искать другие приближённые методы решения уравнений для пограничного слоя. Большая группа этих методов, получивших наибольшее применение к решению отдельных задач, основывается на специальном выборе независимых безразмерных переменных, позволяющем дифференциальные уравнения с частными производными (1.13) сводить либо к одному нелинейному обыкновенному дифференциальному уравнению с числовыми коэффициентами, либо к некоторой последовательности обыкновенных дифференциальных уравнений также с числовыми коэффициентами. В этих методах численно решается обыкновенное уравнение или группа, уравнений и составляются соответственные таблицы. Эти таблицы затем могут быть использованы для целой группы соответственных задач (а не одной какой-либо задачи).  [c.272]


Смотреть страницы где упоминается термин Применение ЭВМ для графического решения задач : [c.122]    [c.4]    [c.294]    [c.555]    [c.140]    [c.84]    [c.372]    [c.574]    [c.99]    [c.384]   
Смотреть главы в:

Курс начертательной геометрии на базе ЭВМ  -> Применение ЭВМ для графического решения задач



ПОИСК



Графические методы в применении к начальным напряжениям определения критической силы для стойки 265,---определения напряжений в фермах 139—141,-------------------решения задач

Графический

Графическое решение

Графическое решение задачи

Спираль Корню и применение ее для графического решения дифракционных задач



© 2025 Mash-xxl.info Реклама на сайте