Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фрикционные материалы - Испытания на износ

Фрикционные материалы — Испытания на износ  [c.326]

Наряду с этим, растущие скорости движения, увеличивающиеся массы сооружений, которые приходится останавливать на коротких участках пути, вызывают необходимость проведения дальнейших систематических работ по изысканию овых видов фрикционных материалов, с более высокими коэффициентами трения, температурными барьерами и другими служебными свойствами. В этом случае, как показывают исследования, материалы, получаемые методом порошковой металлургии, являются весьма перспективными. Испытания на износ и трение при изыскании новых видов материалов являются неотъемлемой частью общей работы. Поэтому вопросу создания испытательных машин уделяется большое внимание.  [c.114]


Для определения показателей степени iy и в уравнениях фрикционной усталости в настоящее время предложено несколько экспериментальных методов [51] 1) но испытаниям на модели фрикционного контакта 2) по результатам экспериментов на износ 3) по данным объемной усталости материалов.  [c.19]

Исследованием свойств фрикционных материалов в различных условиях использования занималось большое количество исследователей, однако вследствие большого разнообразия состава накладок, различия в технологии их изготовления и в диапазоне изменения различных факторов, влияющих на фрикционные свойства, а также различия в принятой исследователями методике испытаний до сих пор не установлены общие закономерности изменения коэффициента трения и износоустойчивости фрикционных материалов. Задача изучения свойств фрикционной пары и подбора фрикционных материалов для определенных условий работы осложняется тем обстоятельством, что коэффициент трения и износоустойчивость пары являются комплексной характеристикой, зависящей от свойств обоих трущихся тел, от режима работы и конструкции тормозного узла. Одна и та же пара трения при использовании ее в различных машинах и различных условиях будет иметь различные значения коэффициента трения и износо-546  [c.546]

Указанная выше методика (ГОСТ 1786-57) оказалась неприемлемой для испытания фрикционных материалов, предназначенных для тяжело нагруженных тормозных узлов самолетов, экскаваторов и пр. Институт машиноведения АН СССР разработал новый метод испытаний, утвержденный ВНИИНМАШ в виде руководящих технических материалов (РТМ 6-60). Испытания материалов на фрикционную теплостойкость согласно РТМ 6-60 имеют очень важную методическую особенность, о которой следует упомянуть в связи с вопросом о соответствии лабораторных и эксплуатационных испытаний. Если ГОСТ 1786-57 обусловливает постоянный ре жим испытаний фрикционных материалов, то РТМ 6-60 допускает некоторый диапазон изменений нагрузок и скоростей. В первом случае получается условная оценка коэффициента трения и износа, привязанная к частным условиям работы. Второй метод испытаний позволяет оценить поведение материалов в условиях постепенно ужесточающегося режима работы, обусловливающего повышение температуры на фрикционных контактах. При таком методе испытаний возможна более правильная оценка свойств тормозных материалов применительно к различным нагрузкам и скоростям.  [c.7]

Стенд используется для испытания на трение и износ металлокерамических фрикционных материалов, предназначенных для тормозов к железнодорожным вагонам.  [c.117]


Энергетические параметры режима работы пары трения, тепловой режим в совокупности с комплексом явлений физико-химической механики контактного фрикционного взаимодействия при трении ФПМ необходимо учитывать при постановке модельных испытаний на трение и износ, а также при разработке фрикционных материалов с заданными свойствами.  [c.240]

Изменение величины коэффициента трения скольжения. Исследования показали, что значительное уменьшение коэффициента трения и резкое увеличение износа происходит при нагреве накладок сверх температурного предела, определенного для каждого типа фрикционных материалов. Если нагрев поверхности трения не превышает этой температуры, то коэффициент трения х изменяется в небольших пределах. Температура поверхности трения, при превышении которой начинается резкое уменьшение ц, может быть названа допускаемой температурой. Испытания вальцованной ленты на тормозе ТК-200 при давлении р = 1,4 кгс/см и максимальной скорости скольжения 15 м/с (рис. 7.6) показали достаточную стабильность коэффициента х. В процессе работы тормоза X не опускался ниже 0,42 даже при нагреве сверх 220° С, однако износоустойчивость ленты при этом значительно снижалась. В то же время х бакелитовой накладки при работе в том же температурном режиме существенно уменьшался (кривая 4).  [c.335]

Книга посвящена анализу различных видов трения и износа, а также расчету некоторых процессов, их характеризующих. Рассматриваются методы испытания на трение и износ. Излагаются основные данные о фрикционных и антифрикционных материалах.  [c.2]

Метод испытания на фрикционную теплостойкость нашел применение и в оценке материалов на трение и износ в высоком вакууме [3]. Особенности [1, 81 поведения материалов в высоком вакууме позволяют считать условия высокого вакуума принципиально новыми для трения материалов.  [c.172]

Испытания материалов на контактно-фрикционную усталость при помощи модели единичной неровности позволяют перейти к расчету интенсивности износа с множественным контактом поверхностей. Определив параметры шероховатости и выявив напряженное состояние на пятнах касания, можно рассчитать интенсивность износа.  [c.225]

Одним из практических выводов этой работы является разработка метода испытания материалов на фрикционную теплостойкость на машине И-47. Эта методика получила широкое применение и в настоящее время выпущена в виде руководящих технических материалов [14]. Дальнейшим развитием этих работ является создание машины ИМ-58 для испытания материалов на трение и износ в условиях стационарного теплового режима и теплового удара.  [c.151]

Однако при исследовании износостойкости фрикционных материалов не всегда удается получить однозначную связь между линейным и весовым износом, так как вследствие высоких температур, возникающих при трении, удельный вёс материала изменяется из-за образования окислов, адсорбирования влаги из окружающей среды и т. п. Для материалов тканых и плетеных существенные погрешности в измерении износа по весу создает накопление продуктов износа в порах материала. При испытаниях фрикционных материалов на реальных тормозных установках измерение износа по весу вообще мало пригодно из-за относительно малой величины веса изнашиваемого материала по сравнению с весом накладки, что снижает точность измерений. Кроме того, измерение износа по весу не позволяет судить о неравномерности износа накладки и установить возможный срок ее службы. Таким образом, определение линейного износа обеспечивает более высокую точность измерений и в большей мере отвечает запросам эксплуатации тормозных устройств.  [c.570]

Качество чугунов оказывает влияние на значение коэффициента трения и износоустойчивости фрикционной пары. Сравнительные значения коэффициентов трения и величин износа некоторых фрикционных материалов, работающих в паре с различными чугунами при температуре около 120° С, давлении в пределах 1,5—7,5 кГ/см и скоростях скольжения от 4 до 15 м/сек, полученные на стенде непрерывного трения, приведены на фиг. 346. Зависимость коэффициента трения тех же фрикционных материалов от температуры при трении по хромоиикелевому чугуну и тех же условиях испытаний показаны на фиг. 347. Как видно из фиг. 346, а, наибольшее значение коэффициента трения получено при трении по ковкому чугуну. Коэффициенты трения фрикционных материалов зависят от качества материала металлического элемента трущейся пары. Значения коэффициента трения вальцованной ленты 6КВ-10 и материала 6КХ-1 по различным металлическим элементам при температуре поверхности трения около 200° С, давлении 2,5 кПсм -и скорости скольжения около 10 м/сек приведены в табл. 89.  [c.573]


Ивановским заводом испытательных приборов изготовлены машины МДП-1 для определения интенсивности износа и коэффициентов трения металлов и пластмасс МФТ-1 для оценки фрикционной теплостойкости материалов, МАСТ-1 для испытаний на трение материала со смазкой и без смазки при нормальной и повышенной температурах (до 400° С).  [c.243]

Установлено [8, 9, 32, 35, 36], что форма и размеры узла трения, коэффиц 1 нт взаимного перекрытия являются факторами, влияющими на поступление газовой среды на фрикционный контакт. В работе [36] предлагается метод моделирования физико-химических явлений, зависящих от действия окружающей среды при трении асбофрикционных материалов критерии моделирования и масштабные коэффициенты перехода получены из условий подобия процессов трения, износа и теплообразования на основании работ Э. Д. Брауна, В. Н. Федосеева, А. В. Чичинадзе и др. [8, 12, 21, 23, 29, 32, 33, 34, 35], а также поступления газовой среды в зону трения. Применяя предлагаемые критериальные выражения, можно рассчитать необходимые макрогеометрические характеристики образцов и режимные параметры при лабораторных испытаниях на трение и износ, а также значительно повысить точность и надежность модельных экспериментов на малых образцах, сведя к минимуму объем стендовых испытаний, на которые целесообразно допускать материалы, показавшие лучшие свойства при испытаниях на фрикционную теплостойкость и теплоимпульсное трение [8, 19, 34, 35, 36].  [c.125]

В литературе приводится описание машины для исследования работы автомобильных тормозов [2], установки для испытания фрикционных материалов ленточных тормозов [3], машины трения и инерционного, стана для испытания фрикционных материалов, предназначенных для тормозов авиаколес [4]. В ряде работ приводятся сведения о стендах, предназначенных для испытания тормозных колодок железнодорожных вагонов. Последние представляют собой, как правило, мощные и громоздкие сооружения, воспроизводящие эксплуатационные условия работы железнодорожных тормозных систем. Такие установки не всегда представляется возможным использовать для отборочных испытаний на трение и износ вновь создаваемых фрикционных материалов.  [c.114]

Вопросы объективной оценки фрикционных качеств материалов, при-меняемы < для трущихся деталей тяжело нагруженных тормозных узлов, заслуживают серьезного внимания существующие методы оценки величины и ст абильности коэффициента трения и износостойкости фрикционных материалов по контрольному графику зависимости коэффициента трения от объемной температуры и линейному износу за цикл испытаний кольцевых образцов на машине трения И-47 не дают полной харак-теристикй работоспособности испытуемой пары трения в реальных эксплуатационных условиях.  [c.132]

Таким образом, для оценки материалов Б тормозах и муфтах, работающих со смазкой, необходимо иметь зависимость коэ4х )ициента трения и интенсивности изнашивания от температуры для пар трения при работе их со смазкой. Такие зависимости могут быть получены, например, по стандартной методике испытаний на фрикционную теплостойкость [55 ] с подачей смазочного материала на контакт на машинах трения УМТ-1 и ИМ-58. При этих испытаниях, проводимых при постоянном для заданного режима Ра, нагрев осуществляется в результате трения и меняется при изменении скорости скольжения. Продолжительность испытаний на каждой ступени скорости обеспечивает выход на стационарный температурный режим. При этом продолжительность испытаний берется такой, чтобы обеспечить требуемый износ для его точного измерения. Так как при испытаниях со смазкой износ значительно меньше, чем при трении без смазки, то продолжительность испытаний на каждой ступени увеличивают.  [c.301]

При трении в воде предельно допустимая нагрузка для графитовых материалов определяется скоростью трения (для случая граничного трения при скорости 2—12 м/с предельная величина q приведена в табл. 58). Износ графитовых материалов уменьшается с увеличением скорости трения до такого ее значения, при котором нарушается вид фрикционной связи и наступает катастрофический износ (т. е. когда теплота трения не успевает отводиться от трущихся поверхностей, что приводит к необратимым изменениям свойств материалов). При высоких скоростях трения наиболее благоприятным сочетанием антифрикционных свойств при трении в воде обладают пропитанные баббитом графитовые материалы. Следует заметить, что испытания других графитовых материалов, пропитанных баббитом или формальдегидной смолой, показали аналогичные или даже более высокие результаты. Испытывались материалы марок АГП-Б83, МГ-Б83, ЭЭГ-Б83, ППГ-Б83 и 2П-1000. Графитосвинцовистый материал НАМИ-ГС-ТАФ при трении по оксидированному титану, благодаря значительному переносу свинца на оксидированную поверхность имеет более низкие свойства, близкие к антифрикционным свойствам пары с применением оловянной бронзы, но при этом допустимая нагрузка в несколько раз ниже.  [c.220]

Рациональная схема организации исследований по трению и изнашиванию предложена И. В. Крагельским [311. Согласно ей исследования целесообразно проводить в четыре этапа (табл. 14). На первом изучают физико-механические характеристики материалов, которые существенно влияют на их фрикционные свойства и износостойкость на втором определяют коэффициенты трения и значения износа на малых образцах материалов, намечают области эффективного использования данного материала или методы улучшения фрикционных свойств. Более достоверные результаты получают на третьем этапе — при стендовых 1 спытаниях узлов трення, которые в большей мере отражают влияние пх конструктивных особенностей на характеристики трения и изнашивания. Завершающими являются натурные испытания З злов трения. На этом этапе проверяют справедливость закономерностей, выявленных на втором и третьем этапах, и эффективность разработанных на их основе рекомендаций. Такая схема с постепенным приближением условий испытаний к реальным наиболее целесообразна. Каждый ее этап является ценным дополнением других этапов.  [c.91]


Общий вид головок с образцами показан на фиг. 8. Испытания ведутся на двух кольцевых образцах, трущихся торцами. Размеры кольцевых образцов следующие внешний диаметр 28 мм, внутрен ний диаметр 20 мм, высота 10—15 мм. Машина обеспечивает враще ние образцов со скоростью 100—5000 об/мин и возможность регули рования скорости вращения в случае изменения числа оборотов Нажимное устройство обеспечивает создание нагрузки на образец Сила трения и коэффициент трения определяются по предварительно оттарированному отклонению маятника. Для изменения теплового поля у машины имеются сменные головки (фиг. 2, б и в), которые или нагреваются током или охлал<даются водой (жидким воздухом) изменение теплового поля меняет коэффициент трения и износ. Преимуществом машины И-47-К-54 является возможность получения на ней широкого диапазона температур (до 1000°). Эта машина позволяет оценивать теплостойкость фрикционных и антифрикционных материалов. Стандартные испытания материалов на фрикционную теплостойкость проводятся при стационарном режиме трения. В случае необходимости проведения испытаний при нестационарном режиме они проводятся на установке, имеющей инерционную приставку.  [c.294]

При определении предельно допустимых значений износов муфты сцепления применяется в основном статистический метод прогнозироваиия ее срока службы с использованием данных стендовых испытаний фрикционных материалов или стендовых испытаний натурных узлов (125 . Поправки в эти данные вносятся на основании анализа эксплуатации муфт сцепления в процессе работы машины.  [c.229]

На рис. 7.1 и 7.2 приведены типичные зависимости коэффициента трения и интенсивности энергетического изнашивания (отношение износа в мг к работе трения в Дж) широко применяемых фрикционных материалов от максимальной температуры поверхностного трения при трении без смазочного материала. Такие зависимости получают при стандартных модельных испьгтаниях на фрикционную теплостойкость на машинах трения типа И47-К54, ИМ-58, МФТ-1, УМТ-1 И-2168 Унитриб . Обычно испытания выполняют при фиксированном нормальном давлении Рд и ступенчато изменяющейся (обычно повышающейся) скорости скольжения  [c.249]

В Институте машиноведения систематически проводятся работы по созданию специального испытательного оборудования и методик испытания, которые в лабораторных условиях позволяют оценить свойства фрикционных и антифрикционных материалов, а также смазочных материалов. Опираясь на эти работы, ИМАШ совместно с ВНИИНМАШ Госстандарта и ПО Точприбор Минприбора провели большую работу по созданию и вьшус-ку нового поколения испытательных машин, а также новых методов испытания, отвечающих современным требованиям, на базе новых достижений в области трения, износа и смазки и, в первую очередь, моделирования трения и износа.  [c.186]

Машина обеспечивает повьш1енную производительность испытаний и высокие метрологические показатели измерения момента трения, скорости и температуры, используется для испытаний материалов на трение и износ при наличии и отсутствии смазочных материалов в широком диапазоне нагрузок и скоростей скольжения при схемах испытаний, соответствующих основным типовым узлам трения. В частности, эта машина успешно используется для определения фрикционной теплостойкости материалов по новому ГОСТу 23.210-80.  [c.187]

Основным методом, оценивающим фрикционную пару трения, является определение ее фрикционной теплостойкости. Оценка эта осуществляется на машине И-47 или усовершенствованном образце ее И-47-К-54 (конструкции И. С. Богатырева, И. В. Колпа-кова, И. В. Крагельского, А. В. Чичинадзе). Описание методики испытаний кратко приведено в гл. IX. Некоторые сведения об этой машине можно найти в работах [91 и [8]. В настоящее время эта машина получила широкое распространение. Большим удобством ее является возможность анализа (по кривым износа и коэффициента трения) изменений, протекающих в материалах. Эта машина пригодна для оценки схватывания пар трения. В настоящее время эта методика утверждена в качестве руководящих технических материалов. Кроме того, применяется методика оценки коэффициента трения и износа на пальчиковой машине трения. Указанная машина представляет собой диск, вращающийся в горизонтальной плоскости, к торцу которого прикладываются два образца, расположенных на одном диаметре. Размер каждого из образцов 22 X 27 мм. Давление на них 2,7 кг см , скорость скольжения 7,5 м1сек. Диск, по которому скользят образцы, изготовлен из чугуна и не меняется. Обычно температура образца при испытании составляет 100—120°.  [c.347]

Определение характеристик фрикционной усталости материалов. Анализ формул для вычисления износа показывает, что значения износа можно определить, если известен показатель кривой фрикционной усталости. Существует несколько методов определения этого параметра (73, 103]. Однако эти методы достаточно трудоемки. Анализ показывает, что методику определения показателя кривой фрикционной усталости можно существенно упростить, проводя эксперименты при нагрузках, соответствующих минимальному коэффициенту внешнего трения при упругом ненасыщенном контакте. Методика определения показателя кривой фрикционной усталости основана на том, что поверхностные слои твердых тел обладают постоянными усталостными характеристиками при трении без смазочного материала с использованием инактивной смазки. Методика определения показателя I заключается в следующем. Проводят испытания при нагрузках, вычисляемых по формуле (76) гл. 1 и соотвегствующих минимальному коэффицне.чту трения при упругих деформациях в зонах касания н различных То и р в течение определенного времени, достаточного для определения линейного или весового износа (например, в течение  [c.62]


Смотреть страницы где упоминается термин Фрикционные материалы - Испытания на износ : [c.553]    [c.565]    [c.567]    [c.33]    [c.191]    [c.166]    [c.103]    [c.55]    [c.469]    [c.475]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Износ материалов

Износ—испытание

Испытание материалов

К п фрикционных

Материалы фрикционных пар

Фрикцион

Фрикционные материалы — Испытание



© 2025 Mash-xxl.info Реклама на сайте