Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовое равновесие основные уравнения

В разд. 2 даны основные законы термодинамики и указаны важнейшие сферы их применения, рассмотрены фундаментальные определения, обеспечивающие понимание общности методов термодинамики для анализа различных явлений, включая реальные процессы теплоэнергетики. Описаны основные термодинамические свойства твердых тел, жидкостей и газов, представлены дифференциальные уравнения термодинамики, устанавливающие взаимосвязи между этими свойствами. Рассматриваются общие условия равновесия различных видов термодинамических систем, включая фазовое равновесие. Приводятся уравнения для расчета термодинамических свойств газовых смесей, в том числе для влажного воздуха.  [c.7]


Основным уравнением, характеризующим фазовые переходы первого рода, является дифференциальное уравнение Клапейрона— Клаузиуса. Это уравнение получается из условия равенства химических потенциалов при равновесии двух фаз  [c.235]

На рис. 5.2 показаны отклонения опытных значений плотности аргона вдоль кривой фазового равновесия от рассчитанных по уравнению (5.1). Видно, что со стороны левой ветви (рис. 5.2,а) расхождения в основном не выходят за пределы 0,2 %. Лучшее согласие наблюдается на правой ветви (рис. 5.2,6) со стороны жидкости здесь отклонения расчетных значений от подавляющего большинства опытных данных не превышают 0,1 %. Однако по мере приближения к критической точке расхождения начинают резко расти (рис. 5.2,в) и достигают значительных величин.  [c.137]

Основным- уравнением, характеризующим фазовые переходы первого рода, является уравнение Клапейрона-Клаузиуса, которое легко получить из условия равенства химических потенциалов Бри равновесии двух фаз  [c.209]

Основные положения фазового равновесия были рассмотрены в гл. 2 (правило фаз Гиббса, законы Генри и Рауля и др.). Там же для идеальных бинарных систем получено уравнение (2.20), которое описывает линию равновесия  [c.103]

В первой части приведены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики, равновесие простых термодинамических систем, равновесие сложных термодинамических систем с фазовыми и химиче-  [c.3]

Уравнение равновесия. Изложенная в 2 теория, основанная на картине слабо взаимодействующих элементарных возбуждений, оказывается недостаточной в непосредственной близости к Я-точке. По мере приближения к этой точке число элементарных возбуждений увеличивается, а их длина свободного пробега уменьшается. Это приводит к уменьшению времени жизни возбуждения. Время жизни возбуждения т связано с неопределенностью в его энергии соотношением Ле % %. В конце концов, неопределенность в энергии делается порядка самой энергии возбуждения 8 и само понятие энергетического спектра теряет смысл. Соответственно теряет смысл и формула (2.12), связывающая р с энергией возбуждения. Теория сверхтекучести в этой области температур должна строиться аналогично общей теории фазовых переходов второго рода, разработанной Л. Д. Ландау в 1937 г. (см., например, Л. Д. Ландау л Е. М. Лифшиц, 1964). Основным в этой теории является введение параметра перехода т], который равен нулю выше точки перехода и отличен от нуля ниже. Вблизи точки перехода параметр т) мал и в теории Ландау все термодинамические величины разлагаются в ряды по этому параметру. Здесь существенно, что вблизи точки перехода время релаксации параметра т), т.е. время, за которое этот параметр принимает равновесное значение, оказывается очень большим — большим, чем все другие времена релаксации в системе. Поэтому, задавая значения ц в каждой точке системы, можно описывать даже неравновесные состояния. При этом должно существовать дополнительное уравнение, описывающее приближение т) к его равновесному значению.  [c.683]


Итак, мы напомнили читателю некоторые основные понятия из теории фазовых переходов термодинамически равновесных систем. Если мы посмотрим на отдельные формулы теории фазовых переходов Ландау, то сразу увидим поразительную аналогию с уравнениями для лазера. В самом деле, выражение (13.11), в котором стоит функция 5 , определяемая формулой (13.10), в точности соответствует функции распределения для лазера (при г = д). Таким образом, потенциал V фиктивной частицы, введенный нами в теории лазера, играет ту же самую роль, что и свободная энергия в теории фазовых переходов систем, находящихся в термодинамическом равновесии. Кроме того, уравнение (13.18) имеет точно такой же вид, как упоминавшееся ранее лазерное уравнение. Главное различие же заключается в том, что д — действительная величина, а амплитуда поля В — комплексная. Но нетрудно перенести понятия критического замедления, критических флуктуаций и нарушения симметрии в теорию лазера. С формальной точки зрения в случае лазера мы наблюдаем точно те же явления, что и при фазовых переходах в условиях теплового равновесия. Существенное различие же в том, что лазер является системой, далекой от термодинамического равновесия. Это — открытая система, в нее постоянно накачивается энергия, и она отдает энергию наружу в виде лазерного излучения. Указанная аналогия носит чисто формальный характер. Мощность накачки, которой определяется ненасыщенная инверсия,— аналог температуры. Можно показать, что мощность излучения соответствует энтропии. Теплоемкость же заменяется дифференциальной эффективностью, т. е. изменением мощности излучения, отнесенным к изменению мощности накачки. Несмотря на формальный характер этой аналогии, исследование свойств лазерного излучения с позиций теории фазовых переходов оказалось весьма плодотворным. Тем более, что существует аналогия не только с фазовыми переходами I рода, но и с фазовыми переходами II рода. При таких переходах возникает петля гистерезиса. В определенных лазерных устройствах подобные фазовые переходы могут быть реализованы.  [c.331]

Ниже рассматривается методика расчета адиабатических скачков первого типа, характеризующихся фазовым равновесием. Расчет основывается на следующих допущениях к паровой фазе применимо уравнение Клайперона pv = RT скорость движения капель вторичной влаги (за конденсационным скачком) равна скорости движения пара (скольжение отсутствует) удельным объемом жидкой фазы по сравнению с удельным объемом сухого насыщенного пара можно пренебречь. С учетом этих допущений основные уравнения газовой динамики для прямого скачка уплотнения при использовании размерных значений скорости приводятся к следующему виду  [c.175]

Состояния равновесия. Нелинейной системе может соответствовать несколько состояний равновесия их число равно числу действительных корней уравнения (15). По структуре фазовых диаграмм вблизи особой точки можно определить устойчивость пли неустойчивость соответствующего состояния равновесия физически реализуемыми являются только устойчивые состояния равновесия (см. п. 3). Для систем с одной степенью свобод111 особые точки, соответствующие дискретным устойчивым и неустойчивым положениям равновесия, всегда чередуются на фазовой плоскости. Основные типы особых точек представлены в табл. 7, более подробно ронрос рассматривается в п.  [c.24]

ОСНОВНЫМ уравнением статистической механики. Частный случай этого уравнения дает условие статистического равновесия, т. е. условие, которому должно удовлетворять распределение систем по фазам для того, чтобы распределение было постоянным. В общем случае основное уравнение допускает интегрирование, в результате которого мы получаем принцип, который, в зависимости от точки зрения, с какой он рассматривается, можно выражать различно — как принцип сохррнения фазовой плотности, фазового объема или вероятности фазы.  [c.15]


А. С, Вольмира и И. Г. Кильдибекова (1964, 1965) эволюция упругих систем с конечным числом степеней свободы трактовалась как марковский процесс в фазовом пространстве. Основное содержание этих работ составляет приближенная оценка вероятности хлопка (первого выхода за пределы сепаратрисы или первого пересечения энергетического барьера для простейшей модели оболочки — нелинейной системы с одной степенью свободы). Эта задача изучалась также Б, П. Макаровым (1965) методом электронного моделирования. Переход к системам с несколькими степенями свободы связан, однако, с большими трудностями. В, В, Болотин и Б, П, Макаров (1965) предложили оценивать устойчивость равновесия по среднему времени пребывания системы в некоторой окрестности равновесия и разработали приближенный метод решения дифференциального уравнения Л, С, Понтрягина, Дальнейшие результаты даны в работе Б, П Макарова (1965),  [c.359]

Наибольшую сложность в исследовании бифуркаций положения равновесия на плоскости представляет задача о рождении предельных циклон. Как правило, основная часть решения этой задачи сводится к исследованию абелевых или сходных с ними интегралов по фазовым кривым специальной гамильтоновой системы. Эти исследования проводятся либо чисто вещественными методами [43], [72], [88], либо с помощью выхода в комплексную область с применением теоремы Пикара — Лефшеца, теории эллиптических интегралов и уравнений Пикара — Фукса [75], [76], [93], [104], [119], [141], [193].  [c.208]

Основные отличия многомерных систем проявляются уже при переходе от двумерной системы к трехмерной, от двумерной фазовой плоскости к трехмерному фазовому пространству. Поведение фазовых траекторий в трехмерном фазовом пространстве может быть запутанным и не поддающимся непосредственному восприятию. Поэтому рассмотрение трехмерного фазового пространства во многих случаях следует сводить к двумерному точечному отображению, геометрическое изображение которого с помощью инвариантных кривых столь же наглядно, как и разбиение на траектории фазовой плоскости. Эти геометрические каргинки могут быть такими же, как и в случае дифференциальных уравнений без предельных циклов, либо с существенными отличиями, которые вызываются пересечениями сепаратрисиых кривых седловых равновесий, образующими голюоинцческце структуры 4, 45]. Эти отличия существенны, так как соответствуют совершенно разным типам поведения системы. При наличии гомоклинической структуры установившиеся движения системы могут иметь стохастический характер. В частности, как некоторые аналогии периодического движения появляются так называемые стохастические синхронизмы. Стохастический синхронизм —- это автоколебание со стохастически меняющейся фазой. Соответствующая ему фазовая картина изображена на рис, 18.  [c.96]

Связанные солитоны [31]. Как мы видели в гл. 17, при резонансном взаимодействии трех (или двух) пространственно однородных или стационарных волн в среде с квадратичной нелинейностью обмен энергией и, следовательно, изменение амплитуд волн осуществляется не при любых фазовых соотношениях между ними. При определенных разностях фаз возможно существование стационарного состояния (на рис. 17.5 ему соответствуют состояния равновесия), в котором амплитуды волн не меняются. Естественно предположить, что подобное состояние должно существовать и при взаимодействии модулированных волн — волновых пакетов, если изменение фаз при их нелинейном взаимодействии сбалансируют эффекты дисперсионного расплывания. На спектральном языке это, по существу, тот же самый нелинейный сдвиг частоты, компенсирующий линейный рассинхронизм, о котором мы говорили в связи с генерацией сателлитов и установлением солитонов огибающей при распространении волнового пакета в среде с кубичной нелинейностью. В простейшей постановке, когда взаимодействуют основная волна ш и ее вторая гармоника 2ш, а дисперсионные эффекты внутри узкого спектрального интервала существенны лишь на основной частоте, мы приходим к стандартному уравнению, описывающему солитоны и двумерные волноводы в среде с кубичной нелинейностью Р/<1 — аа - -  [c.429]

Гидродинамическая турбулентность, описываемая уравнениями Навье-Стокса, имеет много общего с движением динамических систем, описываемых обыкновенными дифференциальными уравнениями, о которых шла речь в предыдущей главе. Связь эта определяется действием вязкости, которая лишает моды с высокими номерами самосто-ятельности . Хопфом даже была высказана гипотеза о том, что все множество траектории уравнения Навье-Стокса (его фазовое пространство бесконечномерно) притягивается к конечномерному множеству. Отсюда сразу следует, что при i оо движение жидкости можно описывать конечномерными уравнениями. Эта гипотеза, правда, до сих пор не доказана, но она кажется совершенно естественной, если учесть, что вязкость препятствует существованию мелкомасштабных возмущений. Добавим, что уже обнаруженные для уравнения Навье-Стокса основные бифуркации носят конечномерный характер [5]. Это, например, переход стационарного устойчивого течения в периодическое (рождение из состояния равновесия предельного цикла), установление двухпериодического течения (рождение двумерного тора) и др. Поэтому есть все основания считать, что и очередная бифуркация — переход к неупорядоченному течению — для многих гидродинамических задач также окажется конечномерной.  [c.496]

Пусть Х,р, Х - координаты положения равновесия. Составим характеристическое уравнение линегфизованной (в окрестности Х, , Х , Х ,) системы. Рассмотрим его корни Р > р2> Рз> поскольку ими и определяется поведение фазовых траекторий в малой окрестности точки (х,д, Хзд). Возможны следующие основные случаи [6].  [c.344]



Смотреть страницы где упоминается термин Фазовое равновесие основные уравнения : [c.208]    [c.247]   
Свойства газов и жидкостей Издание 3 (1982) -- [ c.266 ]



ПОИСК



Равновесие фазовое

Уравнение основное

Уравнения основные

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте