Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конденсаторы электрические

Конденсаторы электрические — см. Номинальные емкости Концентраторы напряжений —  [c.755]

При включении конденсатора в цепь переменного тока, как и в случае цепи постоянного тока, чере.з диэлектрик, разделяющий обкладки конденсатора, электрические заряды проходить не будут. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора в проводах, соединенных с его выводами, появится переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока, кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.  [c.243]


Понятие электрической емкости относится также к системе проводников, в частности двух проводников, разделенных тонким слоем диэлектрика,— электрическому конденсатору. Электрическая емкость конденсатора (взаимная емкость его обкладок)  [c.115]

Распределение напряженности поля по объему тела позволяет найти внутренние источники тепла, суммарную выделяющуюся мощность и, следовательно, приведенное активное сопротивление, а распределение зарядов на электродах — емкость загруженного конденсатора. Электрическое поле в реальных конструкциях рабочего конденсатора оказывается почти всегда существенно трехмерным, и задача может быть строго решена только численными методами с помощью ЭВМ. Алгоритмы таких расчетов известны. Возможности аналитических методов решения крайне ограничены многомерностью поля и наличием областей с разной диэлектрической проницаемостью.  [c.162]

Вазелин конденсаторный (ГОСТ 5774—76) — однородная мазь от белого до светло-желтого цвета, предназначенная для пропитки и заливки конденсаторов электрическая прочность при 50 Гц и 20° С не менее 200 кВ/см.  [c.455]

Конденсаторы (электрические) 447, 448 Конденсаторы темного поля — Технические характеристики 344 Конденсация (вещества) 365 Конические диффузоры 644 Константа равновесия 365 Константан — Коэффициент линейного расширения 17  [c.714]

Конденсаторы 5.606 — Кодированные обозначения 1.130— Классификация 1.132 — Материалы 1.133 — Типы 1.133, 134 Конденсаторы электрические —см.  [c.631]

Емкостный метод. Построенные на основе этого метода конденсаторные динамометры отличаются простотой конструкции. Сила, действующая на конденсатор электрического контура, изменяет его емкость. Это изменение емкости преобразуется в изменение силы тока с помощью высокочастотного устройства.  [c.97]

Потенциометрическая схема или схема делителя напряжения применяется лишь в случаях исследования переменной составляющей измеряемой величины, В этих случаях постоянная составляющая падения напряжения на датчике отфильтровывается разделительным конденсатором.. Электрические сигналы в таких  [c.29]

При экспериментах образец помещали в аппарат высокого давления необходимое давление создавали с помощью большого гидравлического пресса конденсатор бьй заряжен и образец подвергали мгновенному нагреву при разрядке конденсатора (электрический режим во время разряда записывался с помощью осциллографа) затем давление снижали, образец извлекали из установки и исследовали., Из кривых временной зависимости тока и напряжения были получены кривые временной зависимости мощности и сопротивления. С помощью графического интегрирования кривой мощность — время получили кривую энергия — время. При таком методе исследования происходящие в образце явления, проявляющиеся в изменении сопротивления, могут быть связаны с введенной энергией или температурой. Температуру рассчитывали из введенной энергии и имеющихся данных по удельной теплоемкости [16, 17], так как  [c.199]


Электроискровая обработка металла основана на использовании кратковременных искровых разрядов. Схема такой обработки приведена на рис. 239,а. Заготовку (анод) 1 и инструмент (катод) 2 подключают к источнику питания с напряжением, достаточным для возбуждения искровых разрядов. Для их получения используют релаксационные генераторы импульсов. При работе таких генераторов по схеме сопротивление—конденсатор электрическая энергия поступает от источника энергии (например, от сети) через сопротивление 5 и постепенно заряжает конденсатор 6. По окончании зарядки напряжение на обкладках конденсатора повышается.  [c.441]

В установках небольшой и средней мощности каждый конденсатор обслуживается одним или двумя циркуляционными насосами. В установках большой мощности подача воды во все конденсаторы электрической станции осуществляется из одной или нескольких насосных установок.  [c.121]

Прежде чем перейти к рассмотрению примеров, заметим, что в случае линейных проводников и конденсаторов электрическая энергия, запасенная в конденсаторе, определяется выражением  [c.461]

Увлажнение и загрязнение изоляции вызывают увеличение активной составляющей тока /а и вместе с тем увеличение тангенса угла диэлектрических потерь. Показатель очень чувствителен к изменению качества изоляции, поэтому, измеряя его, контролируют состояние изоляции трансформаторов, конденсаторов, электрических машин, высоковольтных вводов и другого электрооборудования.  [c.14]

При работе контактных конденсаторных установок конденсаторы заряжаются при движении электрода-инструмента вверх и разряжаются при приближении его к детали. Электроискровые разряды в бесконтактных конденсаторных установках возникают по мере накопления конденсаторами электрической энергии до напряжения, достаточного для пробоя межэлектродного промежутка.  [c.293]

ЭЛЕКТРОЛИТИЧЕСКИЙ КОНДЕНСАТОР — см. Конденсатор электрический.  [c.460]

Станок состоит из сварочной головки с механизмом подачи электрода комплекта зажимных приспособлений, соответствующих различным размерам конденсаторов механизма (манипулятора) для перемещения и поворота конденсатора электрической и газовой аппаратуры.  [c.34]

Электрические конденсаторы. Электрические свойства ниобия таковы, что вызвали к нему интерес, как к возможному материалу для конденсаторов, одиако, насколько известно, широкого промышленного применения в этой области ниобий не нашел.  [c.185]

Разновидностью методов напыления с нагревом проволоки электрическим током является способ нанесения покрытий взрывающимися проволоками. Этот способ характеризуется тем, что накопленная в конденсаторе электрическая энергия разряжается на проволочный распылительный материал, благодаря чему проволока мгновенно нагревается и взрывается с распылением мельчайших частиц расплавленной части проволоки.  [c.225]

О конденсаторе электрическом см. Электрический, конденсат ор.  [c.403]

Поверхностная плотность зарядов на электродах определяется условием Оп = 4яо (вне конденсатора электрическое поле отсутствует), а ток I = — Зй<5/й1 = шаВ, где 5 —площадь электрода. Таким образом, для тока, вытекающего через левый электрод (В =В1), получаем  [c.166]

Между электронной пушкой и экраном расположены управляющие электроды (рис. 44), Они образуют два конденсатора, состоящих каждый из пары пластин. Когда эти конденсаторы заряжены, поле одного из них ( l) горизонтально, другого (Со) — вертикально. Электронный луч последовательно проходит через оба конденсатора. Электрическое поле конденсатора отклоняет электронный луч вправо (для наблюдателя, смотрящего на внешнюю сторону дна трубки) или влево, смотря по тому, какая из пластин заряжена положительно — правая или левая, Поле конденсатора аналогичным образом отклоняет луч вверх или вниз. Результирующее смещение г светлого пятна (конца луча) на экране есть векторная сумма смещений и создаваемых соответственно полями конденсаторов и  [c.43]

При работе точечных и рельефных машин время протекания сварочного тока составляет относительно небольшую долю общего времени сварочного цикла, остальное время идет на опускание электродов, сжатие деталей и т. п. При шовной сварке относительное время протекания тока больше, чем при точечной и рельефной, однако не превышает, как правило, 50 %. Поэтому для снижения установленной мощности сварочного оборудования в ряде случаев целесообразно во время отсутствия сварочного тока производить накапливание энергии сети в аккумулирующих устройствах. В качестве накопителей энергии предлагалось использовать конденсаторы, электрические аккумуляторы постоянного тока, вращающиеся массы с последующим преобразованием механической энергии в электрическую, электромагнитные накопители и некоторые другие.  [c.217]


Конденсатор электрический система из металлических проводящих пластин и изоляторов между ними. Под напряжением на соединенных между собой пластинах оседают равные и противоположные по знаку заряды. При отключении источника тока запас электрической энергии остается. Ее получают, замкнув пластины резистором (сопротивлением). Емкость зависит от величины поверхности и формы пластин, расстояния между ними и электрической проницаемости изолятора. По форме различают плоские, цилиндрические, сферические по материалу изоляторов — бумажные, керамические, воздушные, электролитические, пленочные и т. п.  [c.429]

Теплота в этом цикле подводится по линии 4-5-6 (см. рис. 6.6) в паровом котле ПК. пар поступает в турбину Т и расширяется там по линии 1-2 до давления ръ совершая техническую работу /тех-Она передается на электрический генератор ЭГ или другую машину, которую вращает турбина. Отработавший в турбине пар поступает в конденсатор К, где конденсируется по линии 2-3, отдавая теплоту конденсации холодному источнику (охлаждающей воде). Конденсат забирается насосом Н и подается снова в котел (линия 3-4 на рис. 6.6).  [c.62]

Охлажденная вода нужна на тепловых электрических станциях для конденсаторов турбин, в компрессорных станциях для охлаждения воздуха и т. д.  [c.103]

Электромагнитная штамповка по принципу создания импульсно воздействующих на заготовку сил отличается от ранее рассмотренных (рис. 3,47, б). Электрическая энергия преобразуется в механическую аа счет импульсного разряда батареи конденсаторов через соленоид , вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке 3. Взаимодействие магнитных полей вихревых  [c.114]

По Гельмгольцу (1879 г.), двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды  [c.157]

Конденсатор, электрическое поле которого квазистационарно, можно представить в виде схемы замещения. Если электроды конденсатора помещены в среду с е или среда с е занимает весь объем ноля к(Я1депсатора, как это имеет место в сферическом, идеальном  [c.143]

В различных областях электротехники находят применение электроизоляционные органические полимерные пленки — тонкие и гибкие материалы, которые могут быть намотаны в рулоны различной ширины. Пленки нашли широкое применение в производстве конденсаторов, электрических машин, аппаратов и кабельных изделий. Электроизоляционным пленкам для отличия их от пленок другого назначения присваиваются специальные марки. Это необходимо, так как от электроизоляционной пленки требуются особая чистота исходного полимера, отсутствие следов катализатора и других загрязнений, чистота пленки при изготовлении и ряд других специфических требованийг. Органические полимерные пленки могут быть разделены на две большие группы, разделяющиеся по электрофизи-  [c.219]

Поскольку ПГТУ с открытой и закрытой тепловыми схемами работают по одному и тому же циклу, то при одинаковых показателях адиабатного расширения и сжатия и одинаковых теплофизических свойствах рабочих тел — парогазовых смесей — возможна унификация почти всэго основного оборудования турбин, компрессоров, холодильников-конденсаторов, электрических генераторов и т. д., за исключением горячего источника энергии (камзры сгорания в открытой схеме и ядерного реактора в закрытой).  [c.12]

КОНДЕНСАТОР ЭЛЕКТРИЧЕСКИЙ (от лат. ondensa-tor, букв.— тот, кто уплотняет, сгущает) — устройство, предназначенное для получения нужных величие электрич. ёмкости и способное накапливать и отдавать (перераспределять) электрич. заряды. К. э. применяются в электрич. цепях (сосредоточенные ёмкости), электроэнергетике (компенсаторы реактивно мощности), импульсных генераторах напряжения, в измерит, целях (измерит, конденсаторы п ёмкостные датчики).  [c.436]

В 1948 г. Госэнергоиздатом был выпущен Б свет составленный в соответствии с решени-е.м Всесоюзного бюро электрической изоляции и посвященный научной и инженерно-технической общественности Советского Союза Справочник по электрической изоляции под редакцией Ю. В. Корицкого и Б. М. Тареева. Особенностью этого справочника, составленного коллективом 23 авторов, явилось то, что, помимо собственно электроизоляционных материалов, в нем описывались также и системы электрической изоляции в кабелях, конденсаторах, электрических машинах, трансформаторах и радиоаппаратуре.  [c.3]

Электроизоляционные органические полимерные иленки — тонкие и гибкие материалы, оторые могут быть намотаны в рулоны различной ширины. Благодаря высоким электрическим и механическим свойствам при малой толщине пленки нашли широкое применение в производстве конденсаторов, электрических машин, аппаратов и кабельных изделий. Для электроизоляционных полимерных пленок важны чистота исходного полимера, отсутствие следов катализатора н других загрязнений, которые могут содержаться в исходном полимере, чистота при изготовлении пленки и ряд других специфических требований. Чтобы отличить электроизоляционные пленки от пленок других назначений, изготовляемых из полимера такого же типа, им присваиваются специальные марки.  [c.76]

Рис. 22.2. Тепловая схема ТЭС с одним регенеративным подогревом питательной воды / — регенеративный подогреватель 2 — паровой котел — пароперегреватель 4 —турбина 5 — электрический renepiiTop 6 — конденсатор 7 -конденсатный насос 8 питательный насос Рис. 22.2. <a href="/info/27466">Тепловая схема</a> ТЭС с одним регенеративным подогревом <a href="/info/30192">питательной воды</a> / — <a href="/info/114838">регенеративный подогреватель</a> 2 — <a href="/info/120561">паровой котел</a> — пароперегреватель 4 —турбина 5 — электрический renepiiTop 6 — конденсатор 7 -<a href="/info/27435">конденсатный насос</a> 8 питательный насос

Действие ЭВМ сводится к последовательному выполнению элементарных вычислительных операций, на которые расчленяется решение любой сложной задачи. При этом в большинстве ЭВМ используется не десятичная, а двоичная система счисления. Это мотивируется тем, что для электронных элементов, применяемых в мапшне (транзисторов, реле и пр.) характерно на шчие двух устойчивых состояний. Например, транзистор может проводить или не проводить электрический ток, конденсатор может быть заряжен или не заряжен и т. п. Для изображения чисел такими элементами и необходима система счисления только с двумя цифрами О и 1. Таким образом для использования ЭВМ оператор, работающий на ней, прежде всего должен перевести заданные числа из десятичной системы в двоичную, пользуясь соответствующими таблицами. Например,  [c.292]

Для механической обработки используют твердотелые ОКГ, рабочим элементом которых является рубиновый стержень, состоящий из оксидов алюминия, активированных 0,05 % хрома. Рубиновый ОКГ работает в импульсном режиме, генерируя импульсы когерентного монохроматического красного цвета. При включении пускового устройства ОКГ электрическая энергия, запасенная в батарее конденсаторов, преобразуется в световую энергию импульсной лампы. Свет лампы фокусируется отражателем на рубиновый стержень, и атомы хрома приходя в возбужденпое состояние. Из этого состояния они могут возвратиться. в нормальное, излучая с(ютоны с длиной волны 0,69 мкм (красная флюоресценция рубина).  [c.414]


Смотреть страницы где упоминается термин Конденсаторы электрические : [c.118]    [c.202]    [c.477]    [c.154]    [c.113]    [c.218]    [c.516]    [c.44]    [c.85]    [c.7]    [c.67]    [c.158]   
Смотреть главы в:

Прогнозное ориентирование развития энергоустановок  -> Конденсаторы электрические


Справочник металлиста. Т.1 (1976) -- [ c.0 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.0 ]



ПОИСК



Конденсатор

Параллелепипед в переменном электрическом поле плоского конденсатора

Расчет конденсатора паровой турбины электрической машины

Ренне В. Т. Электрические конденсаторы. М., Госэнергоиздат, Сенченков А. Ф., Фунштейн Л. Г. Применение ферритов в радиоаппаратуре. М., Госэнергоиздат

Ряды параметрические и размерные электрических конденсаторов и номинального сопротивления резисторов

Термодинамика электрического конденсатора

Электрические конденсатор бумажные, металлобу

Электрические конденсатор керамические

Электрические конденсатор мажные

Электрические конденсаторы пленочные

Электрические конденсаторы с газообразным диэлектриком

Электрические конденсаторы слюдяные

Электрические конденсаторы стеклоэмалевые и стеклокерамически

Электрические характеристики и размеры бумажно-масляных конденсаторов

Электрические характеристики и размеры бумажномасляных конденсаторов

Электрические характеристики и размеры керамических высоковольтных конденсаторов

Электрические характеристики и размеры керамических конденсаторов

Электрическое поле. Конденсаторы

Энергия внутренняя электрического поля конденсаторо

Энергия электрического поля конденсаторо



© 2025 Mash-xxl.info Реклама на сайте