Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр дисперсионный

Будем рассматривать дисперсную среду как систему, в которой твердые частицы и газ способны взаимодействовать с внешним излучением в различных частях спектра. Это означает, что компоненты сквозного потока могут поглощать, рассеивать или пропускать тепловые лучи, а также могут обладать собственным излучением. Подчеркнем, что такого рода возможности имеются лишь в системах частицы — газ . В случаях, когда дисперсионная среда — капельная жидкость, никакого радиационного переноса быть не может (A Qt.h = AiQ =0), так как твердые тела и жидкость для тепловых лучей практически не прозрачны. В псевдоожиженных жидкостью системах в отличие от проточных все же может иметь место радиационный нагрев через свободную поверхность кипящего слоя, отсутствующую в сквозных потоках. Для газодисперсных систем изменение лучистой энергии в рассматриваемом конечном объеме элементарной ячейки дисперсного потока А п за время At определится разностью энергии поглощенного ячейкой падающего извне излучения и энергии собственного излучения этого элемента  [c.42]


Как видно из рисунка, в области полос поглощения от М до /V показатель преломления резко уменьшается с увеличением длины волны, т. е. наблюдается аномальная дисперсия. Аналогичная зависимость наблюдалась и для других веществ (паров натрия и др.). У всех без исключения веществ существуют области аномальной дисперсии. Однако не обязательно, чтобы эти области для всех веществ находились в видимой части спектра. Например, такие прозрачные для видимого спектра тела, как стекло, кварц и др., не имеют аномальной дисперсии на всем протяжении видимого спектра. Аномальная дисперсия наблюдается для стекла в области около 3500 А, для кварца — около 1900 А, для флюорита — около 1300 А. Вообще для каждого вещества существует не одна, а несколько областей или полос поглощения. Поэтому полная дисперсионная картина вещества состоит из областей аномальной дисперсии, соответствующих областям внутри полос (или линий) поглощения, и областей нормальной дисперсии, расположенных между полосами (или линиями) поглощения.  [c.265]

Для дифракционной решетки обычно наблюдают спектры второго или третьего порядков, т. е. т = 2 или 3. В соответствии с этим дисперсионная область ДА, = Х/2 или А./3 очень велика. В этом — огромное преимущество дифракционной решетки, которая позволяет анализировать даже белый свет, т. е. очень обширный спектральный интервал (в тысячи ангстремов), тогда как пластинка Люммера—Герке, например, не дает уже отчетливых максимумов, если падающий на нее свет представляет спектральный интервал, превышающий один ангстрем. Поэтому интерференционные спектроскопы пригодны только для анализа очень однородного света, например для спектральных линий, испускаемых разреженными газами. Они оказывают неоценимые услуги при анализе таких линий, позволяя устанавливать наличие нескольких компонент в этой линии (тонкая структура), оценивать ширину линии, наличие изменений (расщеплений) под действием внешних причин (например, эффект Зеемана) и т. д.  [c.218]

Кривая дисперсии раствора цианина показана на рис. 21.3. Область аЬ приходится на полосу поглощения, где показатель преломления уменьшается, т. е. имеет аномальный ход. За пределами полосы поглощения ход зависимости показателя преломления от длины волны соответствует обычному нормальному ходу дисперсии, т. е. с уменьшением Я показатель преломления медленно увеличивается. У прозрачных веществ (например, стекло, кварц и др.) в видимой области нет полос поглощения, поэтому показатель преломления у них имеет нормальный ход. Однако по мере продвижения в ультрафиолетовую или инфракрасную область спектра, где есть полосы поглощения, показатель преломления начинает довольно быстро изменяться. Таким образом, полная дисперсионная картина для любого вещества состоит из областей аномальной дисперсии, соответствующих областям внутри полос или линий поглощения, и областей нормальной дисперсии, расположенных между полосами поглощения.  [c.82]


Градуировка установки. Перед началом измерений установку градуируют по длинам волн. Для этого входную часть спектрографа ИСП-51 освещают источником света, обладающим линейчатым спектром с щироко расставленными линиями, длины волн которых хорошо известны. В качестве такого источника удобно использовать ртутную лампу, спектр которой приведен в приложении 1. Далее осуществляют запись и расшифровку спектра и.злучения ртутной лампы и устанавливают зависимость между длинами волн ее отдельных линий (пиков на бланке самописца) и делениями барабана, связанного с моторчиком, вращающим призменную часть спектрографа. По этим данным строят дисперсионную кривую установки.  [c.206]

Еще более сложными оказываются дисперсионные кривые и спектр колебаний атомов трехмерного кристалла. Если число атомов базиса равно х, то общее число ветвей колебаний со (к) будет равно 3(х. Из них для трех ветвей частоты со (к) при к- -0 обращаются в О, а для остальных Зр, — 3 ветвей частоты со (к) при к- -0 в нуль не обращаются. Соответственно первые три ветви называются акустическими, остальные—оптическими. Общий вид кривых дисперсий для акустических и оптических ветвей часто бывает схож с видом ш( ) для одномерного случая, хотя количество ветвей для трехмерного случая больше. Однако аналогия наблюдается не всегда для сложных решеток и дальнодействующих межатомных взаимодействий экстремумы (к) могут наблюдаться и при значениях к, не совпадающих с центром или границами зоны Бриллюэна [45].  [c.217]

Рис. 1. Вверху дисперсионные кривые показателя преломления воздуха, алмаза и среды пз в окрестности полосы поглощения Хз, Внизу спектры отражения границы сред П1 и Из А — алмаз — ионный кристалл, ф > 60 в — воздух — ионный кристалл, ф = 0°. Рис. 1. Вверху <a href="/info/192154">дисперсионные кривые</a> <a href="/info/5501">показателя преломления</a> воздуха, алмаза и среды пз в окрестности <a href="/info/191861">полосы поглощения</a> Хз, Внизу <a href="/info/191876">спектры отражения</a> границы сред П1 и Из А — алмаз — <a href="/info/22537">ионный кристалл</a>, ф > 60 в — воздух — ионный кристалл, ф = 0°.
СПЕКТРАЛЬНЫЕ ПРИЗМЫ (дисперсионные призмы) — одна из групп призм оптических служат для пространственного разделения (разложения в спектр) излучений оптич. диапазона на монохроматич. составляющие, различающиеся длина.ми волн. Разделение лучей на монохроматич. составляющие является результатом зависимости угла отклонения О луча, прошедшего через призму (рис. 1), от показателя преломления материала призмы п, различного для разных длин  [c.615]

При выборе иммерсионной жидкости следует иметь в виду, что изображение частицы будет тем контрастнее, чем больше разница между показателями преломления частицы и жидкости. Если показатель преломления частицы больше, чем показатель преломления жидкости, изображение частицы будет более рельефным, вьшук- лым, если меньше — рельеф исчезает и поверхность частицы кажется вогнутой. При равных показателях преломления частица совершенно прозрачна и почти невидима. Контрастность изображения частицы, исследуемой в иммерсионной жидкости с близким показателем преломления (Ап = 0,01—0,02) можно повысить, применив косое освещение препарата, при котором вокруг контура частицы появляется цветной венчик. Показатель преломления зависит от длины волны света, проходящего через кристаллическую частицу. Эта зависимость определяет дисперсию света, которая находится как разность показателей преломления для фиолетового и красного лучей спектра. Дисперсионный эффект выражается в том, что две соприкасающиеся бесцветные среды с мало  [c.14]

Таким образом, детальное исследование показывает, что всякое вещество имеет свои полосы поглощения, и общий ход показателя преломления обусловлен распределением этих полос по спектру. Поэтому противопоставление понятий нормальной и ано.мальной дисперсии теряет смысл. Полная дисперсионная картина для любого вещества состоит из областей аномальной дисперсии, соответствующих областям внутри полос или линий поглощения, н областей нормальной дисперсии, расположенных между полосами поглощения.  [c.542]


Если в уравнении (1.22) произвести замену волнового вектора к на k =k-(-2яg/a, где gl—целое число, то волна с таким волновым числом будет в точности тождественна первоначальной во всех точках и во все моменты времени. Поэтому достаточно рассмотреть изменение к не в интервале от о до оо, а только в пределах от О до 2я/2а или от 0 до ктах = = я/а. Следовательно, кривая для ксО симметрична кривой для к>0. С другой стороны, минимальная частота Итгп = 0 при Я->оо, т. е. спектр частот бесконечной цепочки атомов является непрерывным от (йт п = 0 до сотож и имеет вид, показанный на рис. 12, где представлена так называемая дисперсионная кривая.  [c.29]

На фотоэлектрической флуориметрической установке (ИСП-51 с ФЭП-1) осуществите запись спектра излучения ртутной лампы. Используя табличные данные (приложение 1) и отмечая на бланке самописца значения делений барабана, соответствующие каждой линии спектра, проведите его расшифровку. Постройте дисперсионную кривую установки.  [c.207]

Рис. 28,7. Спектр магнонов в Мпр2 при Г = 4,2 К [23] дисперсионные кривые определены из неупругого рассеяния нейтронов для двух направлений волнового вектора q Рис. 28,7. Спектр магнонов в Мпр2 при Г = 4,2 К [23] <a href="/info/192154">дисперсионные кривые</a> определены из <a href="/info/15944">неупругого рассеяния нейтронов</a> для двух направлений волнового вектора q
Для перестройки и сужения спектра генерации в лазерах на красителях используются дисперсионные светофильтры и призмы, интерферометры Фабри — Перо, дифракционные решетки, а также селективные элементы, работающие на принципе распределенной обратной связи. В РОС-лазерах обратная связь осуществляется за счет брэгговского отражения излучения от периодической структуры, возникающей в акгизной среде в результате модуляции ее показателя преломления. Введение одного селектирующего элемента сужает спектр генерации примерно до 1 нм без существенного снижения выходной мощности. Получение более узких линий достигается за счет комбинации нескольких селекторов и сопряжено со значительными потерями выходной мощности.  [c.957]

Важной характеристикой колебаний атомов является спектр колебаний атомов (фононный спектр) Z)(oj), описывающий зависимость числа фононов (упругих волн) от частоты. По определению он пропорционален дп1дю, а при наличии нескольких ветвей дисперсионных кривых  [c.218]

Другой метод, использующий одновременно пространственное и асимптотическое разложения, предложили Хегемир и Найфэ [33], которые исследовали распространение плоских волн перпендикулярно слоям слоистого композита. Усечение асимптотических последовательностей приводит к цепочке моделей. Для оценки точности той или иной модели был исследован спектр фазовых скоростей. Сохранение всех членов асимптотической последовательности приводит к точному спектру (что обсуждалось в разд. III). Было установлено, что дисперсионная модель первого порядка обеспечивает точность более высокую, нежели некоторые из существующих теорий. Результаты исследования распространяющегося импульса хорошо согласуются с точной теорией. Было также показано, что уравнения теории дисперсии первого порядка могут быть приведены к стандартной форме уравнений теории бинарных смесей.  [c.381]

В соответствии с Нрамерса — Кронига соотношениями расщепление линий спектра поглощения связано с расщеплением дисперсионных кривых, характеризующих зависимость показателя преломления среды от длины волны излучения (см. Дисперсия света). Индуцированная магн. полем оптич. анизотропия может обнаруживаться не только в области поглощения, но и в области прозрачности среды. При этом в геометрии Фойгта она проявляется в виде различия показателей преломления для двух линейно поляризованных компонент (магнитное линейное двупреломление), а в геометрии Фарадея для двух циркулярных компонент (магнитное круговое двупреломление). Наиб, известен и широко применяется линейный по полю эффект магн. кругового двупреломления, проявляющийся в виде поворота плоскости поляризации линейно поляризованного света, распространяющегося через среду вдоль магн, поля Квадратич-  [c.701]

Диспергирующими элементами М. служат дисперсионные призмы и дифракц. решётки. Их угл. дисперсия D — Лф/ДЯ вместе с фокусцым расстоянием / объектива 4 определяют линейную дисперсию Al/Af = Df (Аф — угл. разность направлений лучей, длины волн к-рых отличаются на ДЯ AI — расстояние в плоскости выходной щели, разделяющее эти лучи). Призмы дешевле решёток в изготовлении и обладают большой дисперсией в УФ-области. Однако их дисперсия существенно уменьшается с ростом Я и для разных областей спектра нужны призмы из разных материалов. Решётки свободны от этих недостатков, имеют постоянную высокую дисперсию во всём оптич. диапазоне и при заданном пределе разрешения позволяют построить М. с существенно большим выходящим световым потоком, чем призменный М.  [c.210]

В однородных безграничных средах Н. в. принято наз. однородные плоские волны, распространяющиеся в произвольных направлениях. В изотропных средах волновое число не зависит от направления распространения, а поляризация поперечных волн может быть произвольной (двукратное поляризац. вырождение). В анизотропных и гиротропных средах зависит ох ваправления распространения, а поляризац. вырождение снимается (соответственно различают обыкновенные и необыкновенные Н. в.). На рис. 1 приведены дисперсионные ветви Н. в. в изотропной неизотермич. плазме. Частотные спектры поперечных эл.-магн. и ленгмюровских волн ограничены снизу электронной плазм, частотой сор , спектр ионно-звуковых волн ограничен сверху ионной плазм, частотой сор, значения частот и волновых чисел, ограничивающих дисперсионную ветвь, наз. критическими для данной моды.  [c.361]


Селекция продольных нод. Для разрежения (селекции) продольных мод, имеющих одинаковое поперечное распределение поля, но отличающихся частотой, используются резонаторы, содержащие дисперсионные элементы (призмы, дифракц. решётки, интерферометры и ДР-). В частности, в качестве дисперсионного элемента применяют дополнит. О. р., связанные с основным и образующие т. н. эквивалентное зеркало, коэф. отраженна к-рого р зависит от частоты V. Для удаления из спектра одной из продольных мод наиб, пригоден линейный трёхзеркальный О. р. (рис. 6,а), для выде ления в спектре одной продольной моды — резонатор Фокса — Смита (рис. 6,6) и Т-образный (рис. 6,в). В нек-рых случаях удобен О. р. Майкельсона (рис. 6,г).  [c.456]

Частотные О. ф. (светофильтры) используются для выделения или подавления нек-рого заданного участка спектра широкополосного оптич. излучения. Осп. характеристики таких О. ф. отношение ср. длины волны Ло к ширине полосы пропускания (поглощения) 6к контрастность — отношение коэф. пропускания фильтра в максимуме прозрачности к коэф. пропускания вне полосы пропускания. В зависимости от используемого физ. механизма частотные О. ф. разделяются на абсорбционные, интерференционные, поляризационные, дисперсионные и др.  [c.459]

Абсорбционные О. ф. (окрашенные стёкла, пластмассы, плёнки, поглощающие растворы и т. и.) изготовляются из компонент, полосы селективного поглощения к-рых, накладываясь, перекрывают достаточно широкий спектральный диапазон, оставляя свободным нек-рый заданный участок спектра, к-рый и образует полосу пропускания данного О. ф. Величина для таких фильтров обычно не превышает 10. В интерференционных фильтрах используется интерференция волн, отражённых от двух или более параллельных друг другу поверхностей, в результате чего коэф. пропускания такого О. ф. периодически зависит от длины волны падающего на него излучения. При использовании многослойных диэлектрич. покрытий в качестве отражающих поверхностей оказывается возможным получать О. ф. с шириной полосы менее 1 нм при прозрачности в максимуме до 80%. Действие поляризационных фильтров основано на интерференции поляризованных лучей. Простейший поляризац. фильтр Вуда состоит из двух параллельных поляризаторов и установленной между ними двулучепреломляющей кристаллич. пластинки. При использовапии комбинации таких фильтров (т. и. фильтр Лио) возможно получение весьма узких полос прозрачности (до 10 нм, к Ь к 10 ). В дисперсионных О. ф. используется зависимость показателя преломления от длины волны. Типичные величи-  [c.459]

В далёких УФ- и ИК-областях, в к-рых диэлектрики характеризуются сильным поглощением (х > 1), козф. О. с. достигает значений Л > 0,9. В этих спектральных областях происходит резкое изменение дисперсии показателя преломления напр., для ионных кристаллов значения п изменяются от 0,1 до 10. Вследствие аномальной дисперсии (к-рая всегда есть в области сильного изменения х) появляются две характерные точки пересечения кривых дисперсий граничащих сред, для к-рых ЯJ — я,, а показатель поглощения для одной из этих точек X < 0,1, а для другой х > 1. В результате и в спектре отражения наблюдается минимум в области малого поглощения (х < 0,1) напр., для кварцевого стекла вблизи оси. полосы поглощения А, = 9 мкм величина Д — 0,00006 для х > 1 Л — 0,75. На рис. 1 (вверху) изображены дисперсионные кривые я(Х) для двух первых оптически прозрачных сред — воздуха ( (В = 1) и алмаза (nJg ) и для второй среды в окрестности её полосы поглощения к). Для воздуха и второй среды при равенстве Ящ— г (точки 1 в. 2) наблюдается минимум в спектре отражения (рис. 1, внизу), когда Хг < 0,1 на длине волны 1. Для алмаза и второй среды при равенстве Пу, (точки 3 в 4) минимум в  [c.510]

Плазма в магнитном поле. В сильном магн. поле Н электроны проводимости движутся по спирали с осью, параллельной Н. В проекции на плоскость, перпендикулярную Н, это движение по окружностям с циклотронной частотой сйд = еЩт с. Поэтому м а г н е-топлазмон уже не является чисто продольной волной, а содержит и поперечные составляюпще. В пренебрежении запаздыванием спектр магнето-плазмонов определяется из дисперсионного ур-ния qk iii,q)q = О, где Е — тензор диэлектрич. проницаемости. При д 1 Н частота магнетоплазмона  [c.603]

R, проводимостью подложки G. Через эти параметры определяются такие величины, как коэф. замедления л = L (здесь с — скорость света в свободном пространстве), волновое сопротивление Zg = VL , затухание а = k,%lk(RlZ - - Zg ). Часто при р = 1 в области частот, для к-рой справедливы телеграфные ур-ния, вместо коэф. замедления используют эфф, диэлектрич. проницаемость вдф = я, поскольку в этой области я = = I i, где i — погонная ёмкость П. л. в отсутствие подложки. Дисперсионные характеристики n WIk) высших типов волн в П. л. близки к дисперсионным характеристикам волн в диэлектрич. волноводе. Эти типы волн используются для создания на основе П. л. высокодобротных резонаторов. Поле в П. л, локализовано вблизи проводящей полоски, если коэф. замедления волн в П. л. (рис. 2, кривые О, 1, 2) выше, чем в двуслойном волноводе (рис. 2, кривая 3). В противном случае возможно излучение волны полоской, т. е. трансформация волны в П, л. в волну двуслойного волновода. Излучение возможно также на неоднородностях в П. л. (повороты, разрывы, навесные элементы и т. п.). область значений я, лежащая выше кривой 3, наз. областью дискретного спектра, а ниже — областью непрерывного спектра, поскольку в последнем случае коэф. замедления и длины волн (частоты) могут принимать любые значения.  [c.29]

РЕЗОНАТОР ДИСПЕРСИОННЫЙ — оптический резонатор, содержащий элементы с резкой (в масштабах онтура усиления активной среды) зависимостью затухания мощности от длины волны излучения. Р. д. является неотъемлемой частью широкодиалазонных перестраиваемых лазеров с широкой полосой усиления активной среды. В лааерп2, содержащих Р. д., спектр выходного излучения формируется вблизи минимума контура затухания, поэтому оси, характеристикой Р. д. является эфф. полоса пропускания, определяемая кривизной минимума спектрального контура затухания  [c.318]

В дисперсионной Р. с. а. в ультрадлициоволновой области спектра излучение разлагают в спектр с помощью вогнутых дифракц. решёток скользящего падения (рис. 1). Разрешение спектрометров с дифракц. решёт-  [c.351]

Измерение диффуто о рассеяния рентгеновских лучей позволяет изучать тепловые колебания в кристаллах. Дисперсионные кривые, построенные по рентг. данным, дают возможность определить упругие константы кристалла, вычислить константы межатомного взаимодействия, рассчитать фононный спектр кристалла.  [c.378]

Т эансформация мод дискретного н непрерывною спектров. Поскольку плазма как срсда имеет чётко выраженную микроструктуру в виде микроскопич. потоков заряж, частиц с тепловым разбросом по скоростям, полнь Й набор возможных движений плазмы состоит из двух частей мод дискретного спектра, у к-рых каждому значению волнового числа к соответствует вполне определённое значение частоты колебаний, задаваемой дисперсионным соотноше-  [c.161]


Смотреть страницы где упоминается термин Спектр дисперсионный : [c.574]    [c.215]    [c.217]    [c.163]    [c.132]    [c.278]    [c.54]    [c.54]    [c.141]    [c.544]    [c.651]    [c.652]    [c.416]    [c.564]    [c.17]    [c.309]    [c.339]    [c.392]    [c.281]    [c.351]    [c.376]    [c.53]   
Справочное руководство по физике (0) -- [ c.377 ]



ПОИСК



Спектр дисперсионный атома водорода



© 2025 Mash-xxl.info Реклама на сайте