Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генерация спектр

Необходим резонанс — совпадение частоты падающего света с одной из частот энергетического спектра атома. При этом переход атома с уровня е на уровень е будет соответствовать переходу между аналогичными уровнями других таких же атомов, в результате чего будет осуществлена генерация когерентного излучения.  [c.119]

В последнее время световое давление снова привлекло внимание исследователей. Для экспериментов в этой области оказались весьма удобными некоторые свойства лазеров, а именно монохроматичность излучения и эквивалентность лазера точечному источнику света. Лазерное излучение может быть сфокусировано с высокой точностью . При использовании хороших оптических систем (см. 6.8) можно сфокусировать лазерное излучение в пятно с радиусом того же порядка величины, что и длина волны генерации. Простые оценки показывают, что если в фокусе лазерного излучения мощностью 1 Вт (такая большая мощность легко реализуется, например, в аргоновом лазере, генерирующем в зеленой области спектра) оказывается малая частица с массой 10 г, полностью отражающая излучение, то под действием светового давления она должна получить ускорение, в миллион раз превышающее ускорение свободного падения.  [c.111]


Для генерации и наблюдения инфракрасного излучения того же лазера необходимо иметь прозрачные для него торцовые окна газоразрядной трубки, зеркала резонатора с высокими значениями коэффициента отражения в инфракрасной области спектра и, разумеется, приемник, чувствительный к инфракрасному излучению, например, болометр или фотодиод.  [c.793]

Строго говоря, и показатель преломления, и коэффициент усиления зависят от амплитуды поля и от частоты. Поэтому соотношения (228.1) и (228,2) представляют собой систему уравнений относительно амплитуды и частоты, и их следует решать совместно. Это обстоятельство в некоторых случаях может привести к поправкам к полученным выше решениям. Однако утверждение о дискретности спектра генерации останется, очевидно, в силе.  [c.796]

Очень широкий спектр генерации лазера на красителе изображен на рис. 40.23, а (см. 230). Этот спектр получен на приборе с малой разрешающей силой, и его монохроматические компоненты не разрешаются (светлые линии на спектре соответствуют полосам поглощения воздуха). Однако при достаточном разрешении они наблюдаются, и их число составляет около 10 .  [c.799]

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или иной мере затрудняющих развитие генерации. 1< числу мешающих факторов относится, например, фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электронного состояния, и многие другие. Однако все эти препятствия устраняются специальными методами ), и генерацию удается осуществить с большим числом разных красителей (их насчитывается сейчас около 100) в импульсном и непрерывном режимах, в широкой области спектра (от 350,0 до 1000,0 нм) и с применением в качестве источников возбуждающего излучения ксеноновых газоразрядных ламп и лазеров.  [c.817]

К ионным лазерам относятся и лазеры на парах металлов. В таких лазерах активной средой служат пары меди,, олова, свинца, цинка, кадмия и селена, причем самыми распространенными являются лазеры, в которых применяют пары кадмия и селена. Пары кадмия дают интенсивную непрерывную генерацию с длинами волн 1 = 441 нм и Я2=325 нм. Пары селена дают генерацию по крайней мере на 19 длинах волн, перекрывающую большую часть видимого спектра.  [c.291]

В настоящее время самые мощные газодинамические лазеры работают в инфракрасной области спектра на оптических переходах между колебательными уровнями молекул углекислого газа. Получена генерация в газодинамических лазерах с применением оксида углерода (II), оксида азота и сероуглерода.  [c.292]


Важной особенностью генерации сложных молекул является возможность перестройки частоты излучения в широких пределах. Область перестройки достаточно велика и совпадает с шириной полосы люминесценции, достигая иногда тысячи обратных сантиметров, что соответствует переходу от синей до красной области спектра.  [c.294]

Введение внутрь резонатора селективных элементов не только позволило сузить спектр генерируемого излучения, но и дало простой способ перестройки частоты генерации. Она осуществляется настройкой селектирующего элемента на другую частоту при повороте призмы, ин-  [c.294]

Явление генерации кратных, суммарных и разностных гармоник имеет практическое применение. В лазерной технике удвоение частоты излучения или смешение излучений двух лазеров в нелинейной среде позволяет получать мощный поток когерентного света в области спектра, отличной от исходной. Например, удвоение частоты излучения лазеров на красителях, генерирующих в видимой области спектра, позволяет плавно перестраивать частоты в ультрафиолетовой области. Особый интерес представляет собой преобразование инфракрасного излучения в видимое. Так, смешение излучений с Я,1 = 4 мкм и  [c.307]

Однако следует иметь в виду, что вынужденное излучение рождается в результате тех же самых квантовых переходов в веществе, которые порождают люминесцентное излучение. Более того, последнее играет роль затравки , инициирующей процессы, приводящие в лазерах к генерации вынужденного излучения. Недаром люминесцентные свойства вещества, и прежде всего его спектр люминесценции, имеют решающее значение при выборе активной среды лазера.  [c.186]

В настоящее время инверсная населенность и генерация в газообразной среде получены более чем на 6000 переходов. Газовые лазеры работают в очень широком диапазоне длин волн — от вакуумного ультрафиолета до инфракрасной области спектра — как в импульсном, так и в непрерывном режиме.  [c.895]

Наиболее распространенным источником накачки лазеров на красителях в непрерывном режиме является аргоновый лазер, мощность излучения которого составляет несколько ватт на линиях в синей и зеленой областях спектра. Излучение аргонового лазера фокусируется в область с размерами 10—20 мкм для превышения порога генерации. Для устранения термооптических иска-  [c.956]

Твердотельные лазеры на центрах окраски в ионных кристаллах обладают широкой областью длин волн генерации 0,7—3,3 мкм, высокой стабильностью частоты и. малой шириной генерируемого спектра, возможностью работы в импульсно-периодическом и непрерывном режимах, высоким КПД.  [c.957]

Если в пределах ширины линии активного вещества укладывается три собственных частоты резонатора, то возможен трех-модовый режим генерации. Поскольку спектр собственных частот резонатора эквидистантен, т. е. — П1 == Пд — 2. и для генерируемых частот справедливо следующее приближенное соотношение  [c.367]

Параметры Лазеров подразделяются на внешние и внутренние. Внешние параметры характеризуют излучение, вышедшее из лазера внутренние связаны с процессами, происходящими внутри резонатора с рабочим веществом. К внешним основным параметрам относятся энергия и мощность излучения, длительность импульса, угловая расходимость пучка света, когерентность излучения и поляризации. Помимо этого в ряде случаев необходимо знать распределение энергии и мощности внутри пучка, его спектральный состав и изменение во времени, а также изменение угловой расходимости в ближней и дальней зонах. К внутренним параметрам относятся спектр мод резонатора, усиление и шумы в ряде случаев требуется знать также порог генерации и насыщение. Различные типы лазеров имеют различные параметры, определяющие области их применения в науке и в технике, и в частности в машино-и приборостроении.  [c.19]


Импульсные газоразрядные лазеры составляют один из наиболее важных классов ОКГ. Генерацию в импульсном режиме можно получить со значительно большей мощностью, на значительно большем числе активных сред и переходов и в более широкой области спектра, чем в непрерывном режиме. Это объясняется возможностью вкладывать большие мощности в накачку, так как при кратковременной работе лазера трудности, возникающие с необходимостью отвода тепла, отпадают. При малых длительностях импульса нижний рабочий уровень еще не успевает заселиться, и можно получать инверсию на таких переходах, на которых стационарная инверсия в принципе невозможна.  [c.48]

Схема лазера на азоте приведена на рис. 32. Поскольку генерация осуществляется на длине волны 0,337 мкм, относящейся к ультрафиолетовой части спектра, все оптические элементы в ОКГ выполняются из кварца. Особого внимания заслуживает система возбуждения с поперечным разрядом и бегущим волновым фронтом. В лазерах  [c.51]

В полупроводниках электроны имеют свой особый энергетический спектр, на соответствующих переходах которого осуществляется генерация. Прежде всего рассмотрим основные положения теории полупроводников, основанной на так называемой зонной теории твердого тела.  [c.54]

Акустические наблюдения импульсной генерации типа 3 (рис. 6.1), генерируемой единичным эмиссионным центром, показывают, что при увеличении тока происходит смещение усредненного спектра шумов в более высокочастотную область, т. е. среднее число импульсных переключений тока в единицу времени с ростом тока увеличивается. Укорочение на три порядка максимального интервала между импульсными переключениями при увеличении тока с 1 нА до 10 мкА подтверждает наблюдаемое явление. В то же время при наблюдении эмиттирующей поверхности в автоэмиссионном проекторе видно, что количество эмиссионных центров в терминах автоэмиссионной картины при увеличении тока с 1 нА до 10 мкА практически не меняется. Это позволяет заключить, что с увеличением тока скорость флуктуационных процессов на поверхности катода возрастает. Возрастание скорости процесса при измерениях а аналогично эффекту увеличения что при неизменности должно приводить к уменьшению зависимости а от времени. Таким образом, наблюдаемое уменьшение разброса является результатом сдвига флуктуаций эмиссионных областей и центров в область более коротких времен за счет возрастания скорости флуктуационных процессов на поверхности катода. Увеличение тока с 1 нА до 10 мкА приводит также к росту скорости импульсного переключения эмиссионных центров с временами фронтов от 1 мс для токов 1 —ЮнА до десятков наносекунд и менее для тока 10 мкА. Предельно короткие значения фронтов не разрешены.  [c.222]

Для лучших сортов стекол пороговая энергия накачки составляет 30...50 Дж при длине активных элементов 10см и диаметре 1 см. Вследствие большой ширины линии люминесценции спектр индуцированного излучения в стекле значительно шире, чем в кристаллических средах. При небольших превышениях накачки над порогом генерации спектр излучения стекла с состоит из нескольких линий, занимающих спектральный интервал около 1 нм в области 1,06 мкм. При повышении накачки число генерируемых линий резко возрастает и занимаемая ими область значительно увеличивается — до 5... 10 нм, что хорошо видно на спектрограммах (рис. 10.9) и на графике зависимо-  [c.90]

Рис. 4.1. Квазидвухуровневая энергетическая диаграмма с указанием переходов, принимающих участие при накачке и лазерной генерации. Спектры поглощения и излучения показывают положения соответствующих частот для реализации радиационно-сбалансированного лазера Рис. 4.1. Квазидвухуровневая <a href="/info/12819">энергетическая диаграмма</a> с указанием переходов, принимающих участие при накачке и <a href="/info/144298">лазерной генерации</a>. <a href="/info/16559">Спектры поглощения</a> и излучения показывают положения соответствующих частот для реализации радиационно-сбалансированного лазера
Наблюдаемая в реальных условиях структура светоюго пятна часто представляет собой суперпозицию нескольких поперечных мод (многомодовый режим генерации). Спектр  [c.102]

Было показано, что энергетический спектр квантово - акустических автовозбуждений ограничен предельными значениями квазиимпульса и частоты генерации АЭ, которые определяются из квантово - механических законов пе-  [c.201]

Явления генерации кратных, разностных и суммарных гармоник нашли многочисленные научно-технические применения. Ценность этих явлений для лазерной техники обусловлена тем, что удвоение частоты лазерного излучения или смешивание излучений двух лазеров в нелинейной среде позволяет получать мощный поток когерентного света в области спектра, отличной от исходной. Например, удвоение частоты излучения лазеров на красителях, генерирующих в видимой области спектра (см. 231), обеспечивает когерентное излучение с плавной перестройкой частоты в ультрафиолетовой области. Особый интерес представляет смешивание инфракрасного излучения со светом мощных лазеров (рубинового или неодимового). Дело в том, что приемники инфракрасного излучения значительно уступают по чувствительности и инерционности приемникам, применяемым в видимой и ультрафиолетовой областях. В инфракрасной области очень плохо разработана фотография. Смешивание же излучения, например, с Я, = 4 мкм и 0,694 мкм (рубиновый лазер) дает желтый свет с длиной волны 0,591 мкм, который можно регистрировать и визуально, и фотографически, и с помощью фотоумножителя. Таким способом удается регистрировать даже слабое тепловое излучение.  [c.845]

Ширина спектра излучения лазера определяется главным образом числом генерирующих мод. В оптических резонаторах может одновременно возбуждаться большое число мод (так называемый многомодовый режим генерации). Вследствие этого лазер обычно излучает набор различных частот, которые лежат внутри линии люминесценции активного вещества. Например, для твердотельных лазеров, работающих в многомодовом режиме, ширина линии излучения Атгсч может быть порядка 1 ГГц. Следует отметить, что многомодовый режим работы генератора ухудшает когерентность и направленность излучения.  [c.281]


При импульсном возбуждении возможна генерация и при выполнении условия (34.5). Из (34.5) следует, что эффективные лазерные красители должны обладать высоким квантовым выходом люминесценции слабым перекрытием спектров T l — Т,, и S —S, поглощения со спектром люминесценции малым накоплением молекул в триплетном состоянии, что возможно при малом значении вероятности Psi —> п и большом значении вероятности Рт1 —> so- Насколько жесткими являются эти требования, можно судить по тому, что из тысяч промышленных красителей генерационной способностью при накачке импульсами наносекундной длительности обладают лишь несколько сот соединений. При накачке микро-секундными импульсами генерируют десятки соединений, а при более длинных импульсах, с X порядка ста микросекунд, — вообще единичные красители. Анализ генерационной эффективности красителей различных классов показывает, что в большей или меньшей степени указанным выше требованиям удовлетворяют следующие красители производные оксазола, оксадиазола, бензола и их конденсированных аналогов производные кумарина, родамина, оксазина и полиметиновые красители.  [c.950]

Для возбуждения растворов красителей в импульсном режиме чаще всего используются рубиновый (694 нм, основная частота и вторая гармоника), неодимовый (1060 нм, основная частота, вторая, третья и четвертая гармоники), азотный (337 нм) и ксеноновый (172,5 нм) импульсные лазеры. Генерация может быть осуществлена практически при любой длине волны в диапазоне от 340 до 1100 нм при КПД, достигающем десятков пррцентов. Ширина спектра составляет 5—50 нм  [c.956]

Для перестройки и сужения спектра генерации в лазерах на красителях используются дисперсионные светофильтры и призмы, интерферометры Фабри — Перо, дифракционные решетки, а также селективные элементы, работающие на принципе распределенной обратной связи. В РОС-лазерах обратная связь осуществляется за счет брэгговского отражения излучения от периодической структуры, возникающей в акгизной среде в результате модуляции ее показателя преломления. Введение одного селектирующего элемента сужает спектр генерации примерно до 1 нм без существенного снижения выходной мощности. Получение более узких линий достигается за счет комбинации нескольких селекторов и сопряжено со значительными потерями выходной мощности.  [c.957]

Для эффективной работы активатор должен иметь широкую полосу или группу интенсивных полос поглощения, соответствующих переходам на уровни, лежащие выше метастабильного уровня. Причем вероятность безызлучательных переходов с этих уровней на ме-тастабильный уровень должна быть больше, чем на основной. Выполнение этого требования позволяет значительно увеличить кпд лазера. В спектрах поглощения активного материала должны отсутствовать линии поглощения на длине волны генерации лазера, поскольку это сделает эффект генерации вынужденного излучения неэффективным.  [c.66]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]

Весьма большое значение имеет зависимость величины уноса от скорости легкой фазы. При значительных высотах газового объема, когда паром уносятся практически только транспортируемые капли, скорость витания которых меньше скорости газовой фазы, величина относительного уноса м, отвечающая при однокомпонентной системе пар — жидкость влажности пара, определяется закономерностями генерации капель и их транспортирования. В зоне повышенных скоростей, где основную роль играет дробление жидкости струями газа, как показали эксиернменталы1ые исследования спектра капель, П0днимаюн1нхся на значительную высоту над барботируемым слоем (выше 200 мм), распределение капель по размерам может быть выражено экспериментальным законом с дисперсией, близкой к единице.  [c.285]

Характер изменения энергетических характеристик может быть объяснен изменениями коэффициента отраншния ДОСП в различных областях спектра при малых и средних дозах облучения D 10 Р) сильно уменьшается величина р в УФ-области спектра при сохранении первоначальных величин р в видимой и ИК-областях тем самым уменьшается вредное воздействие на активный элемент покрытия УФ-компонент излучения накачки, приводягцее к образованию в активном материале во время импульса накачки короткоживущих центров поглощения и возрастанию потерь на длине волн генерации [5]. Уменьшение неактивных потерь приводит к росту энергии импульса. При больших дозах -облучения происходит уменьшение величины р в видимой и ИК-областях, что уменьшает выходную энергию отражателя.  [c.98]

Основной задачей прибора МВП-2 является генерирование широкополосных случайных внбропроцессов с требуемым спектром. Это осуществляется путем линейного преобразования сигналов генераторов шума системой формирующих фильтров, перестраиваемых по частоте, добротности и коэффициенту усиления. Работа формирующего устройства основана на раздельном формировании среднего уровня заданного спектра и узкополосных неравномерностей (всплесков и провалов). Средний уровень спектра формирует широкополосный активный фильтр с коррекциями в области верхних и нижних частот. Всплески н провалы требуемого спектра формируются путем синфазного или противофазного сложения выходных сигналов широкополосного и узкоиолосиого фильтров Б нервом или втором сумматоре блока управления. Одни и те же формирующие фильтры могут быть использованы для формирования всплесков или провалов. Кроме того, предусмотрена возможность перевода формирующего фильтра в режим генерации, чем обеспечивается генерирование гармонических сигналов и контроль средней частоты фильтров с помощью частотомера.  [c.321]


Смотреть страницы где упоминается термин Генерация спектр : [c.543]    [c.198]    [c.217]    [c.29]    [c.793]    [c.816]    [c.288]    [c.295]    [c.951]    [c.294]    [c.66]    [c.43]    [c.216]    [c.245]    [c.47]   
Введение в физику лазеров (1978) -- [ c.21 , c.112 ]



ПОИСК



Генезис спектра генерации лазера в стационарном режиме

Генерация

Генерация и усиление электромагнитного излучения в результате нелинейного преобразования спектра оптической накачки

Генерация низкочастотного спектра в поле амплитудномодулироваииой волны

Гетеролазеры спектры генерации

Спектр генерации при отсутствии селектирующих элементов



© 2025 Mash-xxl.info Реклама на сайте