Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуляция волны электромагнитно

Модуляция волны электромагнитной  [c.571]

В качестве примера показана электромагнитная волна с временем когерентности то, которая имеет вид синусоидального электрического поля со скачкообразным изменением фазы через интервалы времени то. Мы видим, что представление о временной когерентности непосредственно связано с монохроматичностью. В дальнейшем (в гл. 7) будет показано, хотя это очевидно из рис. 1.5, что электромагнитная волна с временем когерентности, равным То, имеет спектральную ширину А 1/то. В той же главе покажем, что в случае нестационарного пучка (например, лазерного пучка, полученного в результате модуляции добротности или синхронизации мод) время когерентности не связано обратно пропорциональной зависимостью с шириной полосы генерации и фактически может быть много больше, чем величина 1/Av.  [c.20]


Если в рассеянной волне имеются как амплитудные, так и фазовые вариации, то полосы на голограмме все еще сохраняют вид решетки в ее обобщенном смысле (рис. 1). Однако эти полосы решетки промодулированы как по положению, так и по интенсивности пространственным распределением электромагнитного поля рассеянной волны в непосредственной близости от фотопластинки. Если теперь решетку с модулированными полосами осветить плоской волной, то она воспроизведет (разд. 2) две различные системы дифрагированных волн, фазовая и амплитудная модуляции которых совпадают с аналогичными моду-  [c.122]

Ходящего источника несущих электромагнитных колебаний. Ранее существовавшие источники давали широкий спектр с очень малой мощностью, приходящейся на отдельные частоты колебаний. Световые волны не были когерентными, а это исключало использование их для передачи сложных сигналов, требующих модуляции излучения. Положение резко изменилось с появлением лазеров. Когерентность и монохроматичность лазерного излучения позволяют модулировать и детектировать луч таким образом, что используется вся ширина оптического диапазона. Оптический участок спектра гораздо шире и вместительнее, чем радиоволновой. Покажем это простым расчетом. Подсчитаем, какое количество информации можно передать одновременно по оптическому каналу связи с длиной волны 0,5 мкм (соответствует 6-10 Гц). Для примера возьмем такой город, как Москва. Пусть в ней имеется 1500000 телефонов, 100 передающих широковещательных радиостанций и 5 телевизионных каналов. Для расчетов примем, что полоса частот телефонного канала составляет 3-10 Гц, радиоканала— 20-10 Гц, телевизионного канала— 10 Гц. Возьмем коэффициент запаса, равный 100. Вычисления произведем по формуле  [c.80]

Для устранения этих зависимостей и повышения надежности термометрии при наличии электромагнитных помех необходимы методы, в которых сам исследуемый объект играет роль термочувствительного элемента, а его показания непосредственно считываются зондирующим световым пучком. В этом случае полностью устраняется проблема ненадежности теплового контакта между чувствительным элементом и объектом, поскольку наличие контакта оптического пучка с поверхностью определяется визуально, и его надежность не уменьшается со временем из-за вибраций, деформаций, температурных воздействий или химической активности среды. Световой пучок не подвержен влиянию электрических наводок и имеет ряд характерных признаков (длина волны, поляризация, направление распространения, модуляция интенсивности и т. д.), позволяющих достоверно различать его на фоне оптических помех. Ряд таких методов разработан применительно к исследованиям в газоразрядной плазме и контролю процессов осаждения пленок и травления микроструктур в технологии интегральных схем  [c.22]


Приемные устройства. Назначение приемной радиостанции состоит в том, чтобы 1) уловить распространяющиеся в пространстве электромагнитные волны и 2) при помощи особого комплекса приборов сделать их доступными нашим органам чувства. Первая задача выполняется радиосетью (см.), антенной, вторая — различного рода детектирующими (обнаруживающими) приспособлениями (см. Детектор] в связи с каким-либо приемником, напр, телеграфным аппаратом или телефоном. Приемная антенна в противоположность передающим устраивается только из одного или нескольких проводов. Превращение воспринятых антенной электромагнитных колебаний в осязаемую (напр, посредством телефона) форму происходит путем детектирования их. В простейшем виде это осуществляется включением в антенну детектора, обладающего способностью пропускать колебания преимущественно в одном определенном направлении. Вследствие этого в телефон, приключенный к детектору, попадает выпрямленный ток, пульсирующий с двумя частотами высокой (несущая частота) и низкой (частота, с которой происходит модуляция на передающей радиостанции). Ток высокой частоты замыкается накоротко либо через специально шунтирующую емкость [блокировочный конденсатор  [c.291]

Частота колебаний плазмы — это частота самой низкой моды колебаний свободных электронов. Мы получили в п. 2.4 ( юрмулу (2.99). Типичные значения частоты колебаний плазмы (=со ,/2л) в дневное время лежат между Ю и 30 Мгц. Пусть к одному концу ионосферы приложена сила , создаваемая некоторой радиостанцией, работающей на типичных широковещательных частотах амплитудной модуляции порядка v=1000 кгц. В этом случае v< v , и ионосфера ведет себя как реактивная среда. Электромагнитные волны экспоненциально затухают, аналогично тому, что происходило в случае связанных маятников (см. рис. 3.11). При этом над ионосферой не совершается никакой работы, так как скорости каждого электрона сдвинуты на 90° по фазе по отношению к окружающему их электрическому полю. В случае системы маятников (см. рис. 3.11) средняя энергия, сообщаемая системе внешней силой, также равна нулю (затуханием пренебрегаем). Энергия, которая сообщается маятнику, возвращается им обратно в течение цикла. Несколько иначе обстоит дело в случае радиостанции и ионосферы. Станция получает обратно очень малую часть переданной в ионосферу энергии. Ионосфера не поглощает энергию, но волны отражаются к Земле, захватывая большой район и не попадая в передатчик. Такое отражение волн от ионосферы обеспечивает техническую возможность передачи радиоволн на большие расстояния к приемникам, находящимся вне поля зрения из-за кривизны поверхности Земли. Все это справедливо, если со меньше граничной частоты со ,.  [c.136]

Музыка распространяется с групповой скоростью. Вынуждающая сила УЦ), представленная выражениями (18) или (19), приводит к испусканию электромагнитных бегущих волн, которые можно считать суперпозицией гармонических компонент, занимающих полосу частот Асо. В центре полосы находится частота С0(.р. Эти волны могут быть также представлены как почти гармоническая бегущая волна, имеющая частоту быстрых колебаний со р, равную несущей частоте, и почти постоянную медленно меняющуюся амплитуду Л од(г, t), представляющую собой суперпозицию членов типа (8). [В примере, к которому относится выражение (8), присутствуют только два гармонических колебания и верхняя боковая полоса состоит всего лишь из одной частоты со1 = со р+со ,дд, а нижняя боковая полоса — также из единственной частоты соа = = со р—сй ,цд.] Модуляция распространяется в среде (воздух, ионосфера,. ..) с определенной скоростью. В случае радиостанции с амплитудной модуляцией, работающей, например, на несущей частоте 1000 кгц и с шириной полосы 10 кгц, частотный диапазон простирается от 995 до 1005 кгц. Так как ширина этой полосы частот мала по сравнению с несущей частотой (средней частотой), то можно пренебречь членами высокого порядка в разложении в ряд Тейлора [уравнение (15)]. В этом случае групповая скорость, определяемая уравнением (16), будет равна скорости распространения модулированных колебаний.  [c.254]


Если условия синхронизма выполняются для очень большого числа волн, то в результате взаимодействия форма волны уже будет далека от синусоидальной. Квазигармоническое приближение здесь не работает. Однако часто оказывается, что число взаимодействующих волн невелико. Такие задачи очень важны для нелинейной оптики, физики твердого тела, физики плазмы. Например, классической задачей нелинейной оптики является задача о вынужденном рассеянии Мандельштама-Бриллюэна [4, 5] падающая на кристалл световая волна частоты и>1 вызывает модуляцию плотности среды (электрострикционный эффект), возникает акустическая волна частоты Ш2- Происходит отражение света от появившихся неоднородностей, результатом чего является возникновение волны частоты Шз = 1— 2, распространяющейся в обратную сторону (см. рис. 17.1г). Взаимодействие волн при этом в одномерном случае (световая волна с напряженностями электромагнитного  [c.360]

Нелинейные взаимодействия электромагнитных волн гораздо более удобно рассматривать не как результат модуляции показателя преломления, как это делалось выше, а как следствие нелинейности поляризации. Поэтому мы введем в выражение для поляризации нелинейные члены и запишем  [c.45]

К лазерам с периодической модуляцией оптических характеристик относятся РОС- и РБО-лазеры [5, 9, 12]. Пространственной периодической модуляции могут быть подвергнуты любые параметры этих лазеров, влияющие на условие распространения в них электромагнитной волны полупроводниковые среды, коэффициент затухания или усиления, размеры сечения волновода, форма граничной поверхности и т. д. В ИЛ периодическая структура может быть или совмещена с усиливающим слоем, или расположена за его пределами, выполняя по существу роль селективных по частоте многослойных концевых зеркал обычного резонатора. В первом случае — это РОС-лазеры, во втором — РБО-лазеры. Лазерные структуры с периодической модуляцией оптических характеристик различаются порядком дифракции, равным целому числу полуволн лазерного излучения, укладывающихся на периоде неоднородности. Наиболее удобным методом осуществления РОС является создание на границе соответствующих монокристаллических слоев дифракционных решеток с необходимыми параметрами.  [c.116]

В крыле линии Релея сказываются еш,е более быстрые процессы модуляции рассеянной световой волны, чем процесс переориентации в опыте с дисперсией электромагнитных волн, и поэтому при расчете времени релаксации анизотропии должна быть принята в расчет релаксация первого коэффи-. 5 циента вязкости. Область частот кры-ла линии Релея простирается до 10 гц. Разные участки этой обла- /,7 сти лежат до частоты релаксации, в области частоты релаксации и за частотой релаксации сдвигового ко-  [c.367]

Отраженный сигнал от морской (водной) новерхности формируется мелкой структурой - рябью (длины волн, соизмеримые с длиной волны РЛС), расположенной на склонах крупных морских волн. Основной вклад в отражение вносит спектральная составляющая ряби, длина волны которой связана с длиной падающей электромагнитной волны соотношением (2.9) при п= . Крупные ветровые волны с периодом в десятки метров обнаруживаются (при достаточном разрешении РЛС) благодаря модуляции амплитуды ряби крупной структурой, а также наличия брызг и капель. Аналогичным образом выявляются загрязнения (нефтяные пятна) па морской поверхности, благодаря известному эффекту выглаживания морского волнения, что приводит к почти полному падению отраженного сигнала в нанравлении РЛС.  [c.33]

До сих пор при рассмотрении электрооптической модуляции предполагалось, что фаза электромагнитной волны, выходящей из элек-трооптического кристалла, определяется мгновенными значениями внешнего электрического поля. Понятно, что это предположение теряет силу, когда поле, действующее на кристалл, является переменным с достаточно высокой частотой. В этом случае за время прохождения света через кристалл внешнее электрическое поле может существенно измениться (и даже несколько раз поменять знак) и полная задержка (или изменение фазы) окажется очень малой. Высокочастотные модуляции особенно важны для систем оптической связи с большой скоростью передачи информации, в которых модулирующее поле может осциллировать на частотах микроволнового диапазона. Для учета этих высокочастотных эффектов при электрооптической модуляции необходимо рассмотреть распространение света в кристаллах при наличии электрических полей, изменяющихся как во времени, так и в пространстве.  [c.264]

В гл. 7 мы рассмотрели электрооптические эффекты в кристаллах, т. е. вопрос о том, как внешнее электрическое поле влияет на распространение электромагнитного излучения. Эти эффекты можно использовать для создания модуляторов света, перестраиваемых спектральных фильтров, электрооптических фильтров, сканирующих устройств и т. п. Электрооптическая модуляция позволяет управлять лазерным пучком или контролировать сигнал излучения с высокой скоростью (вплоть до частоты в несколько гигагерц), поскольку при этом не используется механическое перемещение элементов. В данной главе мы рассмотрим различные такие устройства, их характеристики и принципы действия. Рассмотрим также некоторые важные особенности их конструирования. В гл. 11 мы обсудим электрооптические приборы на основе направляемых волн, такие, как модуляторы и согласующие устройства.  [c.297]

Лейт и Упатниекс посмотрели на голографический процесс с позиций теории связи. Это позволило им обнаружить сходство между габо-ровским процессом восстановления волнового фронта и радиолокационным методом обработки сигнала, полученного от антенны с синтезированной апертурой. Ученым было хорошо известно, что сигнал в радиотехнике передается с помощью несущей электромагнитной волны, на которую накладывают передаваемую информацию в виде модуляции несущей по амплитуде, фазе или частоте (а иногда используют и их комбинацию). Эту смесь излучает антенна, а затем принимает потребитель. Частота несущей должна превышать ширину полосы частот передаваемого сигнала. Из теории связи известно, что спектр такого модулированного сигнала состоит из центральной несущей и двух боковых частот, симметрично расположенных относительно ее. И iTa-диотехника располагает способами, с помощью которых можно сравнительно просто отфильтровать полезный сигнал. Сигнал демодули-руют, т. е. отделяют от несущей и направляют пользователю. Этот сигнал совершенно идентичен переданному сигналу. В голографии производится та же демодуляция, основанная на явлении дифракции, только оптическими средствами.  [c.50]


Типичные частоты телевидения и радиостанций, работающих на частотной модуляции, лежат около 100 Мгц. Эти частоты выше граничной частоты ионосферы, лежащей в пределах 10—30 Мгц. Таким образом, для этих частот (около 100 Мгц) ионосфера является дисперсивной средой. Можно сказать, что она прозрачна. Полного отражения электромагнитных волн к Земле уже не происходит, и ионосфера в этом случае не помогает нам в передаче радиосигналов, как  [c.136]

Подобно тому, как для пространственно-временных пакетов, распространяющихся в одномерной слабонелинейной среде, дисперсия оказывала стабилизирующее действие и в результате могли устанавливаться стационарные волны модуляции, в случае развития неодномерных возмущении нелинейной фокусировке волны поперек направления распространения в принципе может воспрепятствовать дифракционное расплывание (описываемое в (20.8) слагаемым, пропорциональным А ьа). В результате совместного действия дифракции и нелинейности становится возможным существование стационарных сфокусированных волновых пучков [27]. Такие пучки, например цилиндрические волноводы, представляют собой чрезвычайный интерес с практической точки зрения — реализовав их, можно было бы передавать энергию, скажем, электромагнитного поля в нелинейной среде на большие расстояния, не опасаясь потерь, вызванных дифракцией. Однако такие волноводы неустойчивы.  [c.426]

Обращение волнового фронта [32, 46]. Уже в первых экспериментах по вынужденному рассеянию электромагнитных волн на создаваемой ими звуковой решетке (условие синхронизма шо = W + ко = кс -Ь q, где LJo, ко и Шс, кс — соответственно частота и волновое число падающей и рассеянной электромагнитных волн, а О, q— частота и волновое число акустической волны) было замечено, что при выходе из области нелинейного взаимодействия рассеянный назад волновой пучок примерно повторяет эволюцию пучка падающей волны-накачки. Затем выяснилось, что во многих экспериментальных ситуациях рассеянная волна точно воспроизводит комплексно-сопряженную падающую волну, сильно промодулированную в поперечном направлении [3]. Повторение рассеянной назад волной того же оптического пути, который прошла накачка по неоднородной (в общем случае случайной) среде, но в обратном направлении, означает, что область нелинейного взаимодействия работает как эффективное зеркало. Но зеркало очень необычное отраженная назад волна повторяет оптический путь падающей волны, лишь когда ее фазовый фронт оказывается комплексно-сопряженным с фазовым фронтом накачки ас( ) do r). При этом полная фаза квазигармонической волны iiut — ikx + iip) при распространении в ж-направлении меняется, как у падающей при обратном ходе времени. Именно поэтому эффекты воспроизведения поперечной модуляции пучка падающей волны в излучении, идущем из области нелинейного взаимодействия, получили название обращение волнового фронта .  [c.428]

S.24. Некоторые вещества, например монокристалл ниобата лития (LiNbOs), изменяют свои диэлектрические свойства под действием электрического поля (электрооптнческий эффект), что позволяет создать фазовый модулятор в оптическом диапазоне. Если плоская электромагнитная волна проходит в такой среде путь, существенно меньший длины волны модулирующего электрического поля, то с достаточной степенью точности показатель преломления среды может быть описан функцией я (/) = л (1 -f 6п os 2nF), где Р — частота модуляции.  [c.57]

С помощью квантовомеханической теории возмущений вычислены индуцированный нелинейный электрический дипольный момент и моменты более высоких порядков атомной системы, облучаемой одновременно двумя или тремя световыми волнами. Учтены члены, квадратичные и кубичные по полю. Выведено важное пространственно-частотное перестановочное соотношение для нелинейной восприимчивости и проанализирована ее зависимость от частоты. Установлено соотношение между нелинейными микроскопическими свойствами и эффективной макроскопической нелинейной поляризацией, которую можно ввести в уравнения Максвелла для бесконечной однородной анизотропной нелинейной диэлектрической среды. Для нелинейного диэлектрика выведены соотношения для энергии и мощности, соответствующие соотношениям Мэнли — Роу в теории параметрических усилителей. Получены в явной форме решения системы уравнений для комплексных амплитуд, описывающих взаимодействие плоской световой волны с ее второй гармоникой или взаимодействие трех плоских электромагнитных волн, которые удовлетворяют энергетическому соотношению (u3 = (Oi-t-W2 и соотношению для импульсов кз = kl -Ь ка -Ь Ак. Рассмотрена генерация третьей гармоники и взаимодействие между большим числом волн. Обсуждены возможности применения теории для исследования низкочастотного и высокочастотного эффекта Керра, модуляции света, генерации гармоник и параметрического преобразования света.  [c.265]

Известно, что в теории колебаний нелинейные процессы играют очень большую роль. Развитие нелинейной теории колебаний тесно связано с развитием радиотехники, поскольку процессы генерации, модуляции и приема радиоволн связаны с нелинейными колебательными процессами. В то время, когда для целей радиосвязи и пoлi.зoвaли ь радиоволны с длиной порядка десятков и сотен метров, можно было всегда считать, что длина волны намного превышает размеры приемных и передающих устройств и нелинейные явления, лежащие в основе их работы, имеют характер колебательных процессов. Процессы же передачи электромагнитной энергии от передатчика к приемнику — волновые процессы — почти всегда можно было считать линейными (исключение составляла кросс-модуляция в ионосфере).  [c.11]

Рассмотрим фотодиод, который равномерно освещен по всей фото-чувствительной поверхности одновременно плоской модулированной оптической волной с плотностью мощности Рц, а также плоской когерентной волной от гетеродина, создающего плотность мощности Р . Для того чтобы увидеть, что происходит с модуляцией сигнала при таких обстоят ельствах, следует вспомнить, что мгновенная мощность несущей волны пропорциональна квадрату амплитуды электромагнитного поля. Под мгновенной мы понимаем значение мощности, усредненное за интервал времени, который мал по сравнению с периодом модуляции, но включает в себя много оптических периодов. Амплитуда электромагнитного поля представлена в виде электрических составляющих электромагнитного поля Ец () и Ец (), относящихся соответственно к принимаемому полю и к полю от гетеродина. Тогда  [c.418]

Посмотрим теперь, как обстоит дело для различных волн. Для электромагнитных волн в пустоте до сих пор никаких нарушений линейности экспериментально не обнарун ено. Однако если электромагнитные волны распространяются вблизи несовершенных диэлектриков или проводников, то возникают характерные нарушения принципа наложения. К таким явлениям относится, например, так называемый Люксембург-Горьковский эффект, состоящий в модуляции передачи одной радиостанции полем другой. Этот эффект объясняют нелинейностью ионосферы.  [c.278]

Такой поляризованный водородный электрод, имеющий форму проволочки, в принципе может быть использован для измерения силы звука. Электромагнитные наводки от излучателя ультразвука устраняются путем модуляции постоянного тока низкой частотой. Это позволяет отличить эффект, создаваемый звуковыми волнами, от немодулированных высокочастотных наводок. Согласно Егеру и Ховорке [4494], таким способом можно измерять силу звука от 10" вт см и больше.  [c.534]


ПАРАМЕТРИЧЕСКИЙ ГЕНЕРАТОР СВЁТА, источник когерентного оптич. излучения, в к-ром энергия мощной световой волны фиксированной частоты преобразуется в излучение более низкой частоты. Процесс преобразования осуществляется в нелинейной среде (в среде с нелинейной поляриза-циех ) и имеет много общего с параметрич. возбуждением колебаний радиодиапазона. Параметрич. возбуждение в радиодиапазоне происходит в колебат. контуре при модуляции его параметров, обычно ёмкости. Периодич. изменение ёмкости с частотой накачки (Он приводит к возбуждению в контуре колебаний с частотой (oJ2 (см. Параметрическая генерация и усиление электромагнитных колебаний). Аналогично могут возбуждаться и световые колебания. Однако в этом случае параметрич. явления носят волн, характер и происходят не в контуре с нелинейным конденсатором, а в нелинейной среде. Последнюю можно представить в виде цепочки колебат. конт ов с ёмкостью, модулированной бегущей световой волной. Световая волна большой интенсивности частоты ш (волна накачки), распространяясь в среде с квадратичной нелинейностью, модулирует её диэлек-  [c.519]


Смотреть страницы где упоминается термин Модуляция волны электромагнитно : [c.177]    [c.516]    [c.208]    [c.142]    [c.22]    [c.117]    [c.339]    [c.339]    [c.11]    [c.57]   
Справочное руководство по физике (0) -- [ c.339 ]



ПОИСК



Волны электромагнитные

Волны электромагнитные (см. Электромагнитные волны)

Модуляция

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте