Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистые стали влияние температуры на свойств

Рис. 87. Влияние температуры на механические свойства углеродистой стали 20 Рис. 87. <a href="/info/222925">Влияние температуры</a> на <a href="/info/58745">механические свойства углеродистой</a> стали 20

Механические свойства, назначение и влияние температуры на предел текучести углеродистой стали некоторых марок для котлов и сосудов, работающих под давлением, приведены в табл. 8.11—8.13.  [c.323]

Рис. 6.34. Влияние температуры на механические свойства конструкционной углеродистой стали (0,45 % С) Рис. 6.34. <a href="/info/222925">Влияние температуры</a> на механические свойства конструкционной углеродистой стали (0,45 % С)
У ряда металлов и сплавов, например у углеродистой стали, при температурах возврата может возникать явление старения, оказывающее противоположное возврату влияние на механические свойства. Старение приводит к увеличению показателей прочности при одновременном уменьшении показателей пластичности. Физическая природа старения окончательно еще не выяснена. Предполагается, что изменение механических свойств в процессе старения происходит вследствие выпадения мелкодисперсных частиц примесей по плоскостям скольжения. Есть данные, что процесс старения связан с концентрацией примесных атомов вблизи дислокаций, а образующиеся облака примесных атомов затрудняют движение дислокаций [111].  [c.50]

Горячая деформация углеродистых сталей в интервале низких температур (700—900 °С) может способствовать появлению структурной неоднородности, оказывающей влияние на свойства.  [c.506]

Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]


Общая закономерность влияния температуры отпуска на термоусталостные свойства углеродистых и низколегированных конструкционных сталей состоит в том, что при ее уменьшении значительно снижается число циклов до появления трещин термической усталости [42].  [c.150]

Температура металла оказывает значительное влияние на его пластические свойства. Так, у углеродистой стали при увеличении температуры от О до 100 °С происходит увеличение пластических свойств и уменьшение твердости и прочности. При повышении температуры  [c.285]

Температура инструмента при резании значительно выше комнатной и изменяется при изменении скорости, подачи, глубины резания. Изменение свойств материала инструмента с изменением температуры оказывает существенное влияние на его стойкость. Принимая твердость за основной фактор, обеспечивающий высокую износостойкость, кривые рис. 8.12 могут объяснить ряд фактов. Из графиков видно, что углеродистая сталь очень чувствительна к температуре и ее твердость резко падает уже при небольших температурах.  [c.180]

Непосредственное влияние охлаждающих свойств СОЖ на технологические параметры проявилось на размере отверстий при развертывании через воздействие на температурные деформации инструмента и обрабатываемой детали увеличение диаметра развертки вследствие нагрева вызывает разбивку отверстий, а увеличение диаметра детали — усадку. С увеличением температуры резания (или скорости резания) эти явления усиливаются. В частности, поэтому при обработке титановых сплавов, имеющих низкий коэффициент линейного расширения, отверстия получаются, как правило, с разбивкой, в то время как при сверлении углеродистых сталей в определенных условиях возникает усадка.  [c.161]

Инструментальные стали У8, У10 после литья, ковки и нормализации имеют практически одинаковую структуру пластинчатого перлита. В связи с этим влияние ТЦО на указанные стали изучали после их нормализации до получения пластинчатого перлита. Был разработан ускоренный режим ТЦО для получения зернистого перлита. Технология этого режима применительно к углеродистым инструментальным сталям сострит в 3-х — 6-кратном ускоренном нагреве до температур на 30—50 С выше точки Ас с последующим охлаждением вначале на воздухе до температуры на 30—50 °С ниже точки Лп и далее в воде или масле. Последнее охлаждение — только на воздухе. Изменение твердости сталей У8 и УЮ в процессе ТО дано в табл. 3.24. Исследование показало, что при ТЦО пластинчатый перлит инструментальных сталей легко переводится в зернистый и твердость снижается до значений, достигаемых отжигом. Оптимальное число циклов при ТЦО по данному режиму для стали У8—4, а для УШ—6. Механические свойства прутков диаметром 30 мм из стали УЮ, прошедших ТЦО, приведены в табл. 3.25. Для сравнения приведены данные механических свойств этой же стали после отжига для получения зернистого перлита.  [c.114]

Вся зона основного металла, в которой в результате нагрева и охлаждения происходит изменение структуры и свойств, называется зоной термического влияния. Ширина ее ограничивается участком с температурой около 100° С. В зависимости от способа сварки она может быть очень малой (до 1 мм или до 40—50 мм). Строение зоны термического влияния для углеродистой стали показано на рис. 311.  [c.489]

Рис. 191. Влияние температуры отпуска на механические свойства углеродистой стали марки 40 Рис. 191. <a href="/info/222925">Влияние температуры</a> отпуска на <a href="/info/453551">механические свойства углеродистой стали</a> марки 40
Углерод оказывает наибольшее влияние на свойства углеродистой и легированных марок стали. При повышении его содержания повышаются пределы прочности и текучести стали, но уменьшаются относительное удлинение, сужение и ударная вязкость. Падение вязких свойств особенно резко наступает при повышении содержания углерода выше 0,40%, и поэтому литье с более высоким его содержанием имеет весьма ограниченное применение только для деталей, работающих на износ при отсутствии динамических усилий. Повышенное содержание углерода влияет на литейные свойства улучшается жидкотекучесть стали, увеличивается усадка и понижается теплопроводность, увеличивается зональная ликвация в массивных отливках, уменьшается пригар формовочных смесей к отливкам при более низкой температуре разливки и меньшей пленки окислов на поверхности жидкого металла.  [c.120]


Таким образом, легирующие элементы при введении их в обычном для конструкционных сталей количестве не оказывают качественного влияния на графики температурной зависимости свойств, а оказывают в основном количественное влияние, т. е. ослабляют или усиливают эффект синеломкости стали, расширяют или сужают интервал температур синеломкости, изменяют положение его на температурной шкале. И только марганец и такие сильно карбидообразующие элементы, как титан и ванадий, наряду с количественными вносят и качественные изменения — на графиках наряду с эффектом синеломкости появляется более высокотемпературный эффект. Это говорит о том, что природа синеломкости углеродистых и легированных сталей одинакова и что закономерности развития синеломкости, установленные для углеродистых сталей, могут быть распространены и на легированные стали.  [c.230]

Рис. 108. Влияние температуры прокатки с обжатием 15% на механические свойства углеродистых сталей при комнатной температуре Рис. 108. <a href="/info/222925">Влияние температуры</a> прокатки с обжатием 15% на <a href="/info/453551">механические свойства углеродистых сталей</a> при комнатной температуре
При отпуске углеродистой стали скорость охлаждения не имеет значения, а для легированной стали — оказывает существенное влияние на механические свойства, особенно на ударную вязкость. Кроме того, отпуск легированных сталей проводят при более высоких температурах, чем отпуск углеродистой стали, так как многие легирующие элементы сдвигают процесы разупрочнения при нагреве закаленных сталей в область более высоких  [c.126]

Наплавкой восстанавливаются автомобильные детали, изготовленные, как указывалось, из конструкционных углеродистых и легированных сталей и термически обработанные. При наплавке и сварке этих деталей встречаются известные трудности, связанные с повышенным содержанием в металле деталей углерода и легирующих элементов. Вследствие влияния высокой температуры механические свойства деталей, термически обработанных на высокую поверхностную твердость, снижаются. Для восстановления первоначальных механических свойств необходимо давать химико-терми-ческую или термическую (в зависимости от деталей) обработку, что усложняет и удорожает ремонт.  [c.221]

Механические свойства, назначение и влияние температуры на предел текучести Стт углеродистой стали некоторых марок для котлов и сосудов, работающих под давлением, приведены в табл. 8.11—8.13 (больгние значения сгт, Ss и КСи соответствуют толщине листа до 20 мм, меньшие — от 41 до 60 мм).  [c.284]

Цель работы. Исследовать влияние температуры на силовоб режим деформирования и механические свойства образцов из углеродистой стали в температурных интервалах холодной, полугорячей и горячей деформации.  [c.18]

Влияние облучения на изменение прочностных свойств нержавею-ш их сталей видно из данных табл. 5.5. Так же как в углеродистых и низколегированных сталях, имеются большие изменения предела текучести. Однако изменения предела прочности и пластичности в результате облучения значительно меньше, чем у углеродистых сталей. Во многих случаях отмечено падение пластичности меньше чем на 50% после облучения интегральным потоком 1 нейтронIсм . Некоторые результаты [33] указывают, что после облучения интегральным потоком 5-10 нейтрон 1см предел текучести нержавеюш ей стали тина 347 при комнатной температуре сравним с величиной предела текучести для меньших потоков, что указывает на достижение насыш ения в изменении этой характеристики. Подобное насыш ение или уменьшение скорости падения пластичности также наблюдается для этой стали.  [c.246]

Фпг 17. Влияние отпуска при 100° в первой стадии превращений на свойства углеродистой стали с 0,94% С (Температура аакалки 815°, количество остаточного аустенита 12%), с 1,02% С (темпера тура закалки 60°, количество оСтаточног-о аусте йнта 21%) и с 1,26% С (температура закалки 980° количество остаточного аустенита 35%). Кривые  [c.439]

Однако механизм вредного влияния никеля нельзя сводить к его аустенитизирующему действию. Вероятно, более опасным свойством никеля является его способность соединяться с серой и давать легкоплавкий сульфид, имеющий температуру плавления всего 644°С (эвтектика Ni—NigSg плавится при 625" С, рис. 78, г), а также давать легкоплавкое соединение с кремнием, ниобием и бором. Уместно напомнить, что возбудитель горячих трещин при сварке углеродистых сталей — сульфид железа -— гораздо более тугоплавок (1189° С, эвтектика Fe—FeS затвердевает при 985° С). Образование сульфида никеля происходит, очевидно, на границах зерен. Этому способствует склонность серы к ликвации и повышение содержания никеля у поверхностей кристаллов аусте-нита, обусловленное характером кристаллизации системы Fe—Сг— —Ni—Мп. Вредное влияние никеля проявляется и в аустенитиза-ции структуры шва, т. е. в утолщении межкристаллитных про-  [c.196]

В связи с тем, что непосредственно после закалки на воздухе или в масле у этих сталей появляются большие напряжения, могущие вызывать саморастрескивание, рекомендуется закаленные изделия немедленно после закалки подвергать отпуску. Отпуск при низких температурах способствует снятию напряжений, возникающих у 12%-ных хромистых сталей после закалки. Отпуск при более высоких температурах вызывает снижение твердости и механических свойств. Влияние отпуска на изменение твердости 12%-ной хромистой стали значительно слабее, чем влияние отпуска на твердость закаленной углеродистой стали. Поэтому для получения тех же значений твердостей до 12%-иых хромистых сталей отпуск проводят и при более высоких температурах.  [c.107]


Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]

Существует большая группа сварных изделий — сварной режущий инструмент. В работе [227] изучено влияние ТЦО на структуру и механические свойства сварных швов заготовок инструмента. Для экономии дорогостоящих быстрорежущих сталей режущий инструмент обычно изготавливают, предварительно сваривая заготовки из быстрорежущих сталей, например Р6М5, и конструкционных (углеродистых и низколегированных). Быстрорежущая часть заготовки предназначена для рабочей (режущей) зоны инструмента, конструкционная, например из стали 45,— для хвостовиков сверл, фрез, метчиков и т. д. Сварку сталей производят двумя наиболее распространенными способами трением и электроконтактным оплавлением. Сварной шов в месте соединения быстрорежущих и конструкционных сталей характеризуется большой твердостью (до 63—65 ННСэ), хрупкостью и практически не обрабатывается резанием. Большая твердость шва обусловлена закалкой поверхностных слоев при охлаждении на воздухе от температур оплавления и появлением в его структуре ледебуритных игл — крупных карбидных включений. Значительная хрупкость зоны шва связана с потерей пластичности сталью, перегретой при сварке до оплавления, и с ускоренной кристаллизацией и последующей закалкой. Такая структура неудовлетворительна не только для механической обработки при изготовлении инструмента, но и для окончательной ТО — закалки и соответствующего отпуска. Дело в том, что если производить закалку сварного соединения, в структуре которого имеется ледебурит, то получаемая структура мартенсита с иглами крупных карбидов тоже имеет неудовлетворительные свойства. На практике часто сварные швы не подвергают закалке.  [c.225]

Теоретически производительность ЭХО находится в прямой зависимости от величины анодной плотности тока, что следует из закона Фарадея. Однако эта зависимость в реальных условиях нелинейна, так как величина выхода по току т) ф onst, что обусловлено характером пассивации, накоплением продуктов реакций, образованием пленок. Как показывают результаты многочисленных исследований, т] зависит от свойств обрабатываемого материала, вида электролита, его температуры, скорости потока, концентрации и pH, величины межэлектродного зазора и ряда других факторов. Существенное влияние на производительность ЭХО оказывают химический состав и структура обрабатываемого материала. Труднее обрабатываются стали с высоким содержанием элементов с резко отличающейся растворимостью [33, 791. Обнаружено снижение выхода по току при увеличении содержания углерода в углеродистой стали соответствующая эмпирическая зависимость имеет вид  [c.40]

Процесс взаимодействия расплавленного эмалевого покрытия с коррозионностойкими, легированными сталями, сплавами на основе никеля, титана, ниобия, хрома осложняется сильным влиянием продуктов взаимодействия на свойства покрытий. Имеют значение природа сплава, механизм его окисления и характер образующихся продуктов реакций, растворение в кристаллической решетке сплавов элементов внедрения, а также изменение состава и свойств покрытий в результате растворения в них продуктов реакций, протекающих на границе раздела фаз. Например, при нагреве до 1100° С заготовок из обычных углеродистых сталей в ванне расплавленного щелочного стекла, обеспечивается получение металла со светлой неокисленной поверхностью, тогда как обеспечить защиту этих сталей силикатными покрытиями идентичного с расплавами химического состава часто не удается. При высоких температурах многие составы силикатных покрытий защищают титан от образования окалины. Однако глубина газонасыщенного слоя титана может превышать 0,1—0,5 мм.  [c.126]

Коррозия, имеющая место в производстве этаноламинов, обусловливается присутствием примесей. В частности, большое влияние на коррозионную стойкость металлов оказывает двуокись углерода. Этаноламины легко поглощают ее, и на этом их свойстве основано широкое использование этаноламинов для очистки промышленных газов от СОг. Дымовые газы, содержащие 10—20% СОг, поступают в абсорбер. Туда же подается 10—30% водный расгвор моноэтаноламина. Далее очищенный газ выбрасывается в атмосферу, а раствор моноэтаноламина, содержащий двуокись углерода, поступает на регенерацию в десорбер, где нагревается до кипения ( 120°С). Аппаратура установок очистки промышленных газов, изготовленная из углеродистой стали, интенсивно корродирует, причем коррозия носит неравномерный и язвенный характер. Сильнее всего корродируют аппараты, работающие при температуре выше 100° С, особенно в местах сварки. Сталь Х18Н10Т в условиях работы кипятильников этих аппаратов также нестойка. Кипятильники из- углеродистой и нержавеющей стали имеюг практически одинаковый срок службы [5—7].  [c.52]

Большое влияние оказывают легирующие элементы и на процесс отпуска стали. При высоком и среднем отпуске стали происходит распад аустенита и образование феррпто-карбидной смеси, сорбита или троостита. Твердость такой смеси зависит от размера карбидов и тем больше, чем меньше их размер. Поскольку карбиды, содержащие легирующие элементы, всегда дисперснее, чем простой цементит, твердость отпущенной стали, содержащей легирующие элементы, всегда будет выше, чем углеродистой при одинаковой температуре отпуска. Замедляя рост карбидных частиц, карбидообразующие элементы одновременно сохраняют пересыщенность а-твердого раствора углеродом до температур 450— 500° С, т. е. способствуют сохранению структуры отпущенного мартенсита. Прочностные свойства после отпуска у легированной стали будут выше, чем у углеродистой.  [c.126]

На скорость резания, допускаемую режущими свойствами инструмента, оказывают влияние химический состав стали, ее термическая обработка и характер структуры, получаемой при термообработке [130]. Так, при уменьшении содержания углерода в конструкционной углеродистой стали допускаемая скорость резания повышается, а при введении легирующих металлов (Сг, Мп и др.) — понижается для стали 40Х наибольшая допустимая скорость резания будет при отжиге с температурой 900°, для стали 40 — при нормализации с /° = 900 ч- 950°, а для быстрорежущих сталей — при изотермическом отжиге Ч Наибольшая допустимая скорость резания наблюдается при зернистом перлите, когда цементит имеет форму мелких шарообразных зерен, равномерно распределенных в феррите, а из структур наибольшую скорость резания допускает феррит, затем (в порядке уменьшения допустимой скорости резания) точечный перлит, зернистый перлит, пластинчатый перлит, сорбитообразный перлит, сорбит, троостосорбит.  [c.164]


Для исследования влияния температуры прокатки от 20 до 700° С на свойства стали при комнатной температуре нормализованные заготовки сечением 16X20 мм из качественных углеродистых сталей 10, 40 и У8 промышленного производства прокатывали с обжатием до  [c.271]

Для исследования влияния отпуска при температурах ниже и выше температуры динамического деформационного старения на структуру и свойства сталей, подвергнутых динамическому деформационному старению, заготовки сечением 20X16 мм из нормализованных углеродистых сталей 10, 40, У8 прокатывали с обжатием 15% при температуре 300° С (для разрывных образцов) и температурах 375, 250 и 300° С соответственно (для  [c.281]

Важно детальнее рассмотреть влияние водорода на механические характеристики стали, особенно обычно применяемой для изготовления экранных труб барабанных котлов углеродистой стали 20. Согласно [59] водород охрупчивает все металлы, всегда уменьшая их пластичность и прочность, причем в стали явление охрупчивания может наблюдаться при концентрации водорода всего 0,2 ему 100 г при нормальных условиях (один атом водорода на 10 атомов металла). Практически водород оказывает заметное влияние на пластические характеристики стали в количестве, превышающем 2 ему 100 г металла [54]. Что касается стали 20, то непосредственно после наводороживання ухудшаются все ее механические свойства ((Тт, (Тв, б, г] , Ск). Это ухудшение существенно усиливается с повышением температуры и давления. Снижение механических характеристик углеродистой стали ири высоких параметрах, как правило, носит необратимый характер, что объясняется не только описанным выше механизмом воздействия водорода в виде атомов или протонов на кристаллическую решетку металла и чрезмерным давлением образующегося в коллекторах молекулярного водорода. Решающим фактором становится одпопремспиое обезуглероживание и снижение межкри-сталлитно прочности стали. При этом основную ответ-  [c.67]

В работах по нитроцементации, изложенных выше, большей частью исследовалось влияние температуры газа, применяемого при нитроцементации, и количества подаваемого аммиака на глубину слоя и концентрацию углерода в интроцементованном слое различных качественных сталей, применяемых главным образом Б автомобильной промышленности. Углеродистые стали обыкновенного качества почти не исследовались. Не исследовано также влияние процесса нитроцементации на механические свойства (предел прочности прн разрыве и нзгибе, износ и предел выносливости).  [c.114]

Феррит при температуре 723°С в твердом растворе может содержать до 0,02 % С, а при комнатной температуре только 0,006 % С. Твердость и механические свойства феррита зависят от наличия и количества элементов, наход.1-щихся в феррите. Наибольшее влияние на его свойства в углеродистых сталях и чугуне оказьшают кремний и фосфор. Чистый феррит имеет твердость порядка НВ 60.  [c.97]

При отливке деталей, особенно из бронзы и стали, в металлические формы значительно улучшаются механические свойства. Детали, залитые в стационарные металлические формы, имеют равномерное, более мелкозернистое и плотное строение, что обеспечивает однородные и более высокие механические свойства литых изделий. Сопротивление удару, особенно при температурах ниже нуля, у деталей из среднемарганцовистой и углеродистой стали, отлитых в металлические формы, значительно выше, чем у таких же деталей, отлитых в сырые песчаные формы. Кристаллизация металла, залитого в металлическую форму, протекает значительно быстрее, чем кристаллизация металла, залитого в песчаную форму. Средняя линейная скорость затвердевания со стороны металлической формы в 3—5 раз больше, чем со стороны песчаной части формы. Детали с небольшой толщиной стенок, залитые в стационарные металлические формы, имеют мелкозернистое, безразлично ориентированное строение, что не достигается при отливке в песчаные формы. Величина действительного зерна оказывает наибольшее влияние на ударную вязкость.  [c.57]


Смотреть страницы где упоминается термин Углеродистые стали влияние температуры на свойств : [c.46]    [c.280]    [c.281]    [c.106]    [c.173]    [c.2]    [c.26]    [c.228]    [c.196]    [c.49]    [c.34]   
Справочник азотчика том №2 (1969) -- [ c.255 ]



ПОИСК



141 — Влияние на свойства

Влияние Влияние температуры

Р углеродистое

УГЛЕРОДИСТ ЛЯ СТАЛ свойства

Углеродистые стали

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте