Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование одностороннее

В условиях бокового и радиального выдавливания характер свободного течения металла в боковые полости зависит от условий деформирования — одностороннего или двустороннего. В случае одностороннего деформирования форма выдавливаемого бокового отростка или фланца не симметрична относительно его срединной поверхности. В случае двустороннего деформирования сохраняется симметрия форм, как и в случае простой осадки. Характер течения определяет различия в распределении деформаций, остаточных напряжений, в велич П ах силовых и энергетических параметров.  [c.11]


Наконец, в случае циклически стабильных материалов (например, среднеуглеродистые и аустенитные стали) ширина петли упру-го-пластического гистерезиса практически не зависит от числа циклов деформирования. При различной ширине петель в четных и нечетных полуциклах происходит одностороннее накопление деформации. Для таких материалов, стабилизирующихся при определенном числе полуциклов k = k, ширина петли определяется по формуле (22.29) при k = k.  [c.686]

Циклическая нестабильность металла приводит кне-стационарности процесса деформирования при малоцикловом нагружении с постоянной амплитудой силы. Такое нагружение принято называть мягким , так как образование пластической деформации при этом является свободным. При мягком нагружении возможно как изменение ширины петли, так и одностороннее накопление пластической деформации в зависимости от числа  [c.78]

Настоящая книга посвящена построению теории ползучести неоднородно-стареющих тел. Она состоит из шести глав. В гл. 1 приводится интегральная форма основных определяющих соотношений между напряжениями и деформациями, т. е. уравнений состояния дается постановка и формулируются условия, которые определяют решения краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, которые отражают наиболее характерные особенности деформирования стареющих материалов во времени. Доказывается ограниченность и асимптотическая устойчивость решения краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями.  [c.9]

Настоящая глава посвящена построению теории ползучести неоднородно-стареющих тел. Приводится интегральная форма линейных и нелинейных уравнений состояния, определяющих связь между напряжениями и деформациями. Дается постановка основных краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, отражающих наиболее характерные особенности деформирования стареющих материалов во времени. Устанавливаются достаточные условия ограниченности и асимптотической устойчивости решений краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями как внутри, так и на границе этих тел.  [c.12]


В отличие от жесткости режима деформирования при мягком нагружении значительную роль приобретает одностороннее накопление пластических деформаций, вызванное так называемым 80 эффектом. Под 80 эффектом понимается различное поведение материала при растяжении и сжатии. Это различие состоит в том, что при деформировании материала сжатием требуются, как правило, более высокие напряжения, чем при деформировании растяжением. Количественно 80 эффект определяется по кривым а—6 при испытании на растяжение и сжатие и выражается в виде 0= а — Ор, где и Ор — соответственно напряжения течения при сжатии и растяжении образца при одной и той же величине деформации .  [c.94]

При симметричном нагружении сплавов выше их предела упругости может происходить накопление односторонних пластических деформаций, в результате которого возникает разрушение, близкое по внешним признакам к статическому. Направленное пластическое деформирование под действием повторно-переменных нагрузок называют циклической ползучестью, а разрушение—квазистатическим. Наиболее рельефно процессы циклической ползучести наблюдаются при пульсирующем растяжении R — 0).  [c.96]

Таким образом, при испытании любым остроконечным коническим или пирамидальным наконечником, а также по методу одностороннего сплющивания конических образцов твердость, вычисленная как удельная работа деформации в виде отношения работы деформирования к объему отпечатка, совпадает с твердостью, рассчитанной как среднее удельное давление в виде отношения вертикальной нагрузки к площади проекции отпечатка. Иначе говоря, твердость можно рассматривать и как среднее удельное давление, и как среднюю удельную работу деформирования. Первый способ удобен при измерении статической твердости, когда измеряется нагрузка, а второй — при расчете динамической твердости, когда известна энергия удара [30, 62].  [c.38]

Здесь У (0 определяется при заданной в цикле нагружения деформации по кривой усталостного разрушения в условиях длительного жесткого нагружения с учетом частоты (времени) деформирования Nf — число циклов до разрушения (появление трещины) е/ — односторонне накопленная деформация в момент разрушения (появление трещины) 8 (О — необратимая циклическая деформация (ширина петли гистерезиса) в к-ш полуцикле нагружения e r t) — односторонне накопленная необратимая деформация  [c.20]

Анализ результатов испытаний материалов на термическую усталость [34, 71, 81, 99, 102, 194, 205] выявил определенную не-стационарность процесса циклического упругопластического деформирования образца, причем нагружение может сопровождаться накоплением с числом циклов односторонней деформации растяжения и сжатия вследствие формоизменения рабочей части с образованием характерных зон шейки и бочки (рис. 1.3.4). Следует подчеркнуть, что указанные особенности деформирования связаны с условиями испытаний (жесткостью нагружения, уровнем температур цикла, скоростью нагрева и охлаждения, видом термического цикла) и определяются различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в различной степени из-за наличия продольного градиента температур, характерного для термоусталостных испытаний.  [c.48]

Процессы циклического деформирования, протекающие при термоусталостном нагружении, характеризуются существенной нестационарностью и накоплением значительных односторонних деформаций. Для оценки сопротивления термической усталости могут быть использованы деформационно-кинетические подходы в линейной трактовке.  [c.56]

Для расчетной реализации деформационно-кинетических критериев длительного малоциклового разрушения, помимо характеристик предельных деформаций, необходимо знать изменение необратимой и односторонне накопленной деформации по числу циклов и во времени. При этом специфика исследования деформационных свойств при высоких температурах связана с возможным влиянием реологических характеристик и в соответствии с этим со значением, которое приобретают скорость и время циклического деформирования, наличие или отсутствие длительных высокотемпературных выдержек под напряжением и без, характерных для условий работы высоконагруженных элементов конструкций.  [c.85]


Использование во время термоусталостных испытаний дефор-мометров открывает возможность записывать диаграммы циклического неизотермического деформирования и судить о кинетике напряжений и деформаций в процессе испытаний. Оказывается, что нагружение на термоусталостных установках не соответствует жесткому, в общем случае является нестационарным, сопровождающимся накоплением односторонних деформаций за счет их по-циклового перераспределения в системе образец — машина и особенно в пределах отдельных частей менее жесткого по сравнению с машиной неравномерно нагретого по длине образца [79, 99, 213].  [c.247]

На рис. 6.2.3 показаны результаты тензометрирования в указанных условиях деформирования. Расчетная кривая 1 и экспериментальные точки соответствуют друг другу достаточно хорошо. При этом увеличение исходного сопротивления резистора рассчитывалось по формуле (3.2.1) для величины циклической деформации каждой ступени нагружения с началом отсчета числа циклов от момента перехода на новую ступень. Вычитание из данных тензометрирования сигнала, связанного с увеличением исходного сопротивления тензорезистора в процессе малоциклового нагружения, позволяет установить действительную историю деформирования деталей (рис. 6.2.3, кривая 2) и при нагружении, сопровождающемся накоплением односторонних деформаций.  [c.269]

После определенного количества циклов проводилось одностороннее закручивание образцов с выходом на кривую упрочнения с целью выявления зуба и площадки текучести. Одновременно с регистрацией механических кривых изучались изменения магнитной проницаемости образцов. Результаты исследований представлены на рис. 1,2. Циклическое деформирование при т з<Тг1.т (рис. 1, /) не привело к заметному изменению амплитуды напряжения в течение всего времени испыта-  [c.215]

Для многих материалов объемное пластическое деформирование приводит к более или менее существенному повышению предела текучести, и это обстоятельство может быть благоприятным для их сопротивления малоцикловой усталости. Снятия остаточных напряжений сжатия не происходит, если поверхностный наклеп осуществляется рядом с местами интенсивного накопления макропластической деформации. Так, испытания при одностороннем изгибе призматических образцов из корпусной стали с концентратором напряжений показали благоприятное влияние поверхностного наклепа зон, прилегающих к опасному сечению на всех этапах малоциклового нагружения.  [c.165]

Несколько иначе протекает разрушение при сжатии в условиях нагрева образцов стеклопластика ЭФ-С. Рассмотрим схему, представленную на рис. 174, д—3 и иллюстрирующую последовательность протекания деформирования и разрушения образцов, характерную для стеклопластиков эпокси-фенольной группы, подвергаемых действию одностороннего нагрева и сжатия. На рис. 174, д показано исходное состояние образца. Накопление повреждений (рис. 174, е, ж) состоит из последовательных актов пластического сжатия в ограниченных зонах отдельных слоев материала, возникающих в те моменты, когда температура каждого слоя достигает значений, соответствующих началу размягчения связующего. Ины-  [c.273]

Для оценки неизотермической малоцикловой прочности при различных (а в общем случае производных) сочетаниях режимов нагрева и нагружения, свойственных эксплуатационным характеристикам реального конструктивного элемента, должен быть получен, с одной стороны, комплекс исходной информации кинетика параметров процесса циклического упругопластического деформирования (в опасной зоне) и прежде всего изменение полной (или необратимой) деформации с числом циклов нагружения, и данные, характеризующие развитие односторонне накопленной деформации по числу циклов, а  [c.41]

Для расчетной реализации деформационно-кинетических критериев разрушения помимо характеристик предельных деформаций необходимо знать изменение необратимой и односторонне накопленной деформаций по числу циклов и во времени. Изучение сопротивления циклическому деформированию при нормальных и умеренных повышенных температурах проведено достаточно подробно [17, 18] и не требует специального рассмотрения. С другой стороны, сопротивление циклической ползучести, развивающейся в условиях высоких температур, изучено недостаточно, и можно отметить лишь несколько работ в этой области [19—21].  [c.49]

Ввиду небольшой величины односторонне накопленной деформации по сравнению с пластичностью, результаты изотермических испытаний с выдержками могут быть выражены в традиционной для усталостных испытаний форме зависимости пластической деформации от числа циклов до появления микротрещины. При этом в связи с выраженной кинетикой напряжений и деформаций необходимо рассмотреть, какие эффекты в определении долговечности может дать неучет указанной нестационарности процесса деформирования.  [c.95]

Сопротивление образованию и развитию трещин малоциклового нагружения в общем случае зависит от циклических свойств металла, режима нагружения и размеров трещин. В работах [1—4] рассмотрены кинетические особенности процессов упругопластического деформирования и деформационные критерии малоциклового разрушения с учетом циклических свойств в связи с анализом условий образования трещин в зонах концентрации напряжений при комнатной температуре. Условия распространения трещин малоциклового разрушения при комнатной температуре с учетом кинетики пластических деформаций в их вершине изучались в работе [5]. В упомянутых работах показано, что долговечность на стадии образования трещин в зонах концентрации напряжений рассчитывается по величинам амплитуд и односторонне накапливав мых местных деформаций с использованием условия линейного суМ мирования квазистатических и усталостных малоцикловых повреждений. Скорости распространения трещин малоциклового нагружения и долговечность на стадии окончательного разрушения вычис ляются по величинам размахов коэффициентов интенсивности деформаций и предельной пластической деформации в вершине трещины.  [c.99]


Рис. А4.13. Кривые циклической ползучести (ползучести в цикле) сплава ВД220 при циклическом деформировании (односторонняя ползучесть). Рис. А4.13. <a href="/info/31953">Кривые циклической</a> ползучести (ползучести в цикле) сплава ВД220 при <a href="/info/129869">циклическом деформировании</a> (односторонняя ползучесть).
В качестве второго примера рассматривался образец из стали 12ХНЗМД размером 5x5x100 мм, подвергнутый одностороннему пластическому поверхностному деформированию (ППД) методом ультразвуковой обработки. Образец разрезали диском с алмазным напылением (толщина 0,8 мм, радиус 80 мм) с измерением длины надреза I и деформации eii = e . Разрезку осуществляли как со стороны, подвергнутой ППД (рис. 5.3, образец /), так и с противоположной стороны (образец II). Результаты измерений представлены ниже.  [c.276]

Если какое-либо прозрачное тело подвергнуть одностороннему сжатию (или растяжению), то в результате такого воздействия образуется своеобразный квазикристалл , оптическая ось которого проходит в направлении действия деформирующей силы. Оптические свойства деформированного таким образом тела соответствуют свойствам одноосного кристалла. При пропускании света в направлении, перпендикулярном к образовавшейся оптической оси, возникает двойное лучепреломление. Это яв-  [c.63]

При мягком режиме нагружения щирина петли нестабильна и деформирование может сопровождаться накоплением односторонней деформации. Поэтому получение основных закономерностей малоциклового разрущения при мягком нагружении затруднительно. Более характерным видом малоциклового испытания являются испытания при жестком режиме нагружения, когда е= onst с использованием коэффвдиента асимметрии Ге. Схема петли упруго-  [c.368]

Выполненные на поликристаллических сплавах исследования при пульсирующем цикле нагружения (Я = 0) в области малоцикловой усталости показали достаточно устойчивое закрепление очагов локальной деформации и накопление односторонней деформации с увеличением числа циклов. Распределение локальных деформаций при повторно-переменных нагружениях прослежено нами на сплаве ПТ-ЗВ, микронеоднородность деформации которого при статическом нагружении ранее была подробно исследована. Образцы испытывали при жестком симметричном цикле деформирования с.амплитудой деформации 1 %. Как и при статическом нагружении, поверхность образцов перед нагружением подвергали многократной злектрополировке, после чего на нее вдоль оси образца наносился ряд реперных точек уколами алмазной пирамиды с расстоянием между ними Ю. мкм. Величина фрагментов составляла 130 — 180 мкм. Расстояния между реперными точками измерялись до нагружений, после нагружений и разгрузок.  [c.29]

Циклическое упругопластическое деформирование приводит к накоплению пластических деформаций, зависящему от количества циклов нагружения и амплитуды деформации в каждом цикле. Это накопление может быть односторонним, монотонно нарастающим по мере увеличения количества циклов или не приводящим к однонаправленному росту деформаций. Характер протекания пластических деформаций зависит от условий передачи нагрузки на деформируемый элемент, жесткости сопрягаемых деталей, а также от свойств материала. Накопление деформации при упругопластиЧеском деформировании металлов с низкой частотой приводит к появлению трещин и, в конечном счете, к разрушению конструкций при малоцикловом (несколько сотен или тысяч циклов] и при многоцикловом (10 — 10 циклов) нагружении. Закономерности деформирования и разрушения металлов при малоцикловых и многоцикловых испытаниях имеют ряд различий.  [c.86]

Рис. 15. Геометрическое подобие отпечатков и деформированного объема материала при вдавливании конуса или пирамиды (а) и при одностороннем сплющивании (б) 2y = onst dj /ij = d, h,. Рис. 15. <a href="/info/20693">Геометрическое подобие</a> отпечатков и деформированного объема материала при вдавливании конуса или пирамиды (а) и при одностороннем сплющивании (б) 2y = onst dj /ij = d, h,.
В Институте машиноведения исследования в области малоцикловой усталости, развернутые по инициативе академика АН УССР С. В. Серенсена и доктора технических наук профессора Р. М. Шнейдеровича, в течение ряда лет проводятся, исходя из учета кинетики полей неоднородных деформаций определяемых свойствами диаграммы циклического деформирования, и возможности одностороннего накопления деформаций, ведущему к ква-зистатическому разрушению. Структура задачи определения несущей способности элементов конструкций при малоцикловом нагружении состоит из трех основных направлений  [c.4]

Отличительной особенностью процесса сопротивления материалов малоцикловому нагружению является непостоянство с числом циклов и во времени диаграммьг деформирования. Следствием отмеченного оказывается перераспределение в общем случае напряжений и деформаций в процессе циклического нагружения за пределами упругости элемента конструкции. При этом возникает явление нестационарности условий деформирования даже при повторном нагружении конструкции постоянными нагрузками (механическими и термическими). С другой стороны, условия циклического деформирования за пределами упругости определяют величины циклических и односторонне накоп.ленных деформаций на стадии образования макротрещины и особенности достижения предельного состояния по разрушению.  [c.5]

Таким образом, для оценки термоусталостной прочности материалов необходимо иметь информацию о кинетике циклической и односторонне накопленной деформации, получаемой из экспериментов на термоусталостных установках с непрерывной автоматизированной регистрацией параметров процесса деформирования и нагружения [34, 102, 104], а также получить данные-о располагаемой пластичности и сопротивлении неизотермической усталости с использованием программных установок со следящимп системами нагружения и нагрева, позволяющих воспроизводить, в частности, требуемые режимы неизотермического статического разрыва и жесткого усталостного нагружения в условиях заданной формы цикла нагрева [91].  [c.49]

Сочетание приведенных выше свойств и особенностей деформирования при термоусталостных испытаниях сплава ЭП-693ВД обусловливает появление трещин циклического разрушения в зонах шейки , что говорит о выраженном влиянии процесса накопления односторонних деформаций и, следовательно, квази-статических повреждений на достижение предельного состояния по условию циклического разрушения. Однако при испытаниях на больших уровнях долговечности с жесткостью нагружения с <" 95 тс/см, когда эффект накопления односторонних деформаций практически отсутствует (см. рис. 1.3.6), можно ожидать возникновения термоусталостной трещины в зоне перехода от рабочей длины к конической части образца, где температура цикла соответствует минимальной пластичности и, следовательно, долговечности материала.  [c.51]

Проведенная серия термоусталостных испытаний позволила выявить особенности сопротивления неизотермическому деформированию сплава ЭП-693ВД. Установлено, что процесс циклического деформирования протекает в шейке , где и происходило разрушение, весьма нестационарно. В указанной зоне образца, где локализация деформаций начиналась практически с первых циклов нагружения, накапливаются при долговечности порядка 1000 циклов величины односторонней деформации на уровне  [c.52]


Приведенные примеры показывают, что уравнения (2.6.4), (2.6.5) позволяют достаточно точно описать кинетику изменения напряжений и деформаций при разнообразных программах нагружения. Отметим, однако, что удовлетворительные результаты получаются при программах нагружения, включаюш их циклы с различными амплитудами напряжений при отсутствии среднего напряжения в цикле. Использование уравнений для расчета диаграмм деформирования асимметричных циклов дает аффект одностороннего накопления пластических деформаций, что не наблюдается в экспериментах для циклически упрочняюгцихся материалов.  [c.134]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Одним из основных вопросов оказывается при этом влияние односторонне накопленных пластических деформаций на рост исходного сопротивления тензореаистора в ходе повторного знакопеременного деформирования. Для изучения указанных особенностей процесса проведен цикл испытаний [20], включающий соответствующие режимы деформирования. Были выполнены режимы н бсткого асимметричного нагружения, когда размах цикли-  [c.269]

Важной особенностью испытаний на термическую усталость является, как отмечено, неоднородность поля деформаций по длине образца, изменяющаяся с числом циклов вследствие различного сопротивления статическому и циклическому деформированию частей образца, нагретых в разной степени. Поцикло-вая трансформация поля деформаций приводит к тому, что на различных участках образца может накапливаться односторонняя деформация разных знаков с образованием характерных зон — шейки и бочки [40].  [c.36]

Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида МегзСб), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, пре-де.л текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной ( решетчатой ) структуры.  [c.71]

Предложен простой способ прямого микроструктурного изучения твердых тел при деформировании в среде сжиженных газов, основанный на прозрачности хладоагента. Разработан криостат с односторонним вводом силовых элементов, шюлна.значениып для использования на стандартной машине ПМ-4Р.  [c.162]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Явление циклической ползучести и квазистатического разрушения чаще всего связано с условиями асимметричного мягкого нагру кения циклически стабильных и разупрочняющихся материалов. В ус.пови-ях жесткого нагружения односторонняя деформация не накапливается и процессы циклической по.тзучести не реализуются. Ква.зиста-тическое разрушение всегда связано с направленным пластическим деформированием, по не всегда накопление односторонних деформаций сопровон дается квазистатическим разрушением [11. Разрушение при циклической ползучести в малоцикловой области в общем случае может иметь и усталостный характер. При этом накопленная деформация достигает значительной величины, а разрушение происходит в результате образования и развития до критической величины усталостной трещины.  [c.134]

При циклическом деформировании в упругопластической области возникают пластические деформации, накапливающиеся циклически (за каждый цикл возникает деформация гистерезиса, обозначенная на рис. 4 2sp) и односторонне (Авр,), за счет циклической анизотропии [15], процессов релаксации и ползучести при выдержках. Для деформационной оценки накопленного повреждения используется уравнение кривой малоцикдовой усталости в начально предложенной форме [16]  [c.11]


Смотреть страницы где упоминается термин Деформирование одностороннее : [c.88]    [c.45]    [c.56]    [c.37]    [c.25]    [c.348]    [c.96]   
Основы теории штамповки выдавливанием на прессах (1983) -- [ c.111 ]



ПОИСК



223 III односторонний

Сварка холодная — Длина вылетов с односторонним деформированием

Точечная сварка с односторонним деформированием



© 2025 Mash-xxl.info Реклама на сайте