Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Корреляционная функция равновесная процесса

Эта формула совпадает с хорошо известным выражением для равновесной корреляционной функции слабо неидеального газа. Нетрудно убедиться в том, что интеграл столкновений (3.3.1), вычисленный с корреляционной функцией (3.3.40), равен нулю. Следовательно, интеграл столкновений (3.3.30) в равновесном состоянии также равен нулю. Отметим, что для интеграла столкновений (3.3.36) отдельного доказательства не требуется, так как он получается из выражения (3.3.30) путем вычитания членов, описывающих двух- и трехчастичные процессы.  [c.207]


Другой пример процессов, для которых кинетические коэффициенты выражаются через временные корреляционные функции с обычным определением эволюции микроскопических потоков, это медленные (марковские) процессы в системах, состоящих из слабо взаимодействующих подсистем. В таких случаях корреляционные функции вычисляются с частично-равновесным статистическим оператором (6.2.7), где T t) = l/P t) — неравновесная температура подсистемы и — некоторый эффективный гамильтониан. Кинетический коэффициент в частично-равновесном состоянии имеет вид  [c.36]

Рассмотрим фазовую функцию х 1), т. е. функцию, зависящую от времени через динамические переменные, определяющие состояние, или фазу системы. Если фазовые корреляционные коэффициенты р(т), связывающие х (О и х(/- -т), обладают свойством р(т)->0 при т->оо, то функция х (/) есть эргодическая, т. е. ее среднее по времени равно ее фазовому среднему (по поверхности постоянной энергии) для почти всех начальных условий на поверхности постоянной энергии в фазовом пространстве. Фактически для доказательства эргодической теоремы необходимо показать, что корреляционная функция р(т) ведет себя именно нужным образом. Хинчин приводит интуитивные соображения, подтверждающие такое поведение x t) для случая, когда х 1) представляет собой фазовую функцию, зависящую от небольшою числа динамических переменных (координат одной молекулы), в системе с очень большим числом степеней свободы, т. е. с очень большим числом молекул. Однако необходимое свойство корреляционной функции является характерным для необратимого процесса, и его следует установить вполне строго, прежде чем доказывать таким путем эргодическую теорему. Мы исследуем здесь возможность обращения теоремы Хинчина, т. е. изучим, когда и при каких дополнительных условиях из эргодического характера фазовой функции следует ее необратимость, выражаемая асимптотическим поведением корреляционной функции р(т)->0 при т->оо. Это означает, что мы хотели бы изучить возможность получения статистической механики необратимых процессов, исходя из эргодического постулата, точно так же, как это делается в статистической механике равновесных процессов. В этой связи нас не интересует, является ли эргодическое свойство общим динамическим свойством или оно справедливо лишь в том случае, когда  [c.305]


Обсудим теперь вопрос, в какой степени результаты, полученные в предыдущем параграфе, могут быть применены к статистической механике процессов, зависящих от времени. Обычно при обосновании статистической механики равновесных явлений, постулируют, что для изолированных механических систем с заданной энергией рассматриваемые динамические функции являются эргодическими. Этот постулат означает, что среднее по времени от динамических функций почти для всех начальных условий равно их среднему по поверхности постоянной энергии (по микроканоническому ансамблю). Мы обсудим здесь вопрос о том, можно ли построить на этой же основе теорию необратимых процессов. Процессы x(t), рассматриваемые в статистической механике (т. е. зависимость от времени динамических переменных J ), являются эргодическими в смысле, указанном в 3, если символ Ж, используемый в 2 и 3. считать обозначением среднего по микроканоническому ансамблю. Кроме того, они являются стационарными в силу стационарности микроканонического ансамбля. Далее, можно предполагать, что для обычных типов гамильтонианов эти процессы удовлетворяют самому слабому требованию относительно непрерывности, т. е. являются непрерывными в среднем. Это эквивалентно предположению, что процессы являются непрерывными в том смысле, что их корреляционные функции всюду непрерывны. Таким образом, если бы нам удалось  [c.313]

Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]

При нагружении композита наблюдаются последовательно сменяющие друг друга стадии структурного разрушения. Пока степень повреждений не превышает 7% процесс структурного разрушения npКорреляционная функция, построенная для равновесного состояния, соответствующего точке / на рис. 7.8а, локальна, затухает на расстоянии 6 i. Значительное ослабление взаимного влияния при увеличении расстояния является признаком ближнего порядка во взаимодействии повреждений. Коэффициент корреляции снижается до 0,2 на расстоянии 2 f . Малое смещение а в пределах 10% корреляционных функций в положительную область обусловлено некоторой несимметрией относительно ортогональных осей формы структурного элемента, несмотря на то, что схема дискретизации макроскопически квазиизотропного композита выбиралась из условия минимального разброса эффективных модулей Юнга в трех взаимно ортогональных направлениях. Например, в случае зернистого композита с двумя изотропными компонентами модули Юнга которых равны 10 МПа и 10 МПа, при одинаковый коэ ициентах Пуассона 0,25 и совпадающих объемных долях ука занное отличие в эффективных модулях не превышало 2%.  [c.142]


Соотношения взаимности для кинетических коэффициентов были впервые получены Опсагером [133]. Он исходил из гипотезы, что затухание равновесных флуктуаций происходит так же, как и релаксация неравновесных средних значений, и использовал инвариантность уравнений движения частиц относительно обращения времени и магнитного поля ). Соотношения Онсагера играют исключительно важную роль в теории необратимых процессов. На них фактически основана вся неравновесная термодинамика (см., например, [70]). Как мы видели, в статистической механике эти соотношения выводятся из свойств симметрии корреляционных функций и функций Грина.  [c.365]

Подставив оператор производства энтропии (8.4.87) в неравновесное распределение (8.4.82), можно, в принципе, вычислить средние значения в правых частях уравнений (8.4.61) и (8.4.62). Для не слишком быстрых процессов достаточно марковского приближения. Напомним, что обычно марковское приближение в гидродинамических уравнениях означает, что dS t 1 )/dt dS t)/dt. Иначе говоря, предполагается, что термодинамические параметры, описывающие неравновесное состояние, мало изменяются за время затухания корреляционных функций микроскопических потоков. Однако в случае сверхтекучей жидкости правило перехода к марковскому приближению нужно уточнить. Дело в том, что первый оператор в формуле (8.4.92) явно зависит от времени через локально-равновесную волновую функцию конденсата ФДг, ), которая быстро осциллирует. В приближении идеальной жидкости можно положить d4fi/dt = дф/dt)i, где локально-равновесное среднее определяется выражением (8.4.65). Опуская там все слагаемые, зависящие от и v , получаем  [c.203]


Смотреть страницы где упоминается термин Корреляционная функция равновесная процесса : [c.446]   
Термодинамика и статистическая физика Т.3 Изд.2 (2003) -- [ c.150 ]



ПОИСК



Корреляционная функция

Корреляционная функция равновесная

Процесс равновесный

Процессы Функции корреляционные

Функция процесса



© 2025 Mash-xxl.info Реклама на сайте