Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вакансии II 233, 234. См. также Дефекты

Во всех исследованиях, рассмотренных в этом разделе, образцы перед отжигом проходили полное старение. Однако для определения стабильности промежуточных продуктов конденсации вакансий необходимо также изучение влияние отжига образцов, прошедших частичное старение. Считают, например, что конденсация вакансий приводит по крайней мере к двум последовательностям превращения дефектов [37] образование скопления вакансий — тетраэдрических дефектов упаковки — сидячие петли Франка — полные призматические петли и скопление вакансий — петли Франка — тетраэдры или полные петли.  [c.219]


Все это предполагает, что энергетические состояния, доступные электрону, известны п что их концентрация и энергия не зависят от распределения электронов. Это не так, когда мы включаем в рассмотрение неупорядоченность решетки (вакансии и дефекты внедрения), которая сама подчинена условиям равновесия. При дайной температуре не только электроны распределены по данным зонам в энергетическим уровням дефектов согласно статистике Ферми, но я полная концентрация вакансий и дефектов внедрения сама является функцией температуры. Концентрация примесных атомов также может быть функцией температуры, например, когда твердое тело находится в контакте с газообразной фазой, содержащей способные легко диффундировать атомы.  [c.90]

Вакансии П 233, 234. См. также Дефекты в кристаллах Валентные зоны 1155 в металлах 1197 волновые функции 1197—199  [c.402]

Вакансии II 233, 234. См. также Дефекты в кристаллах Валентные зоны I 155 в металлах I 197 волновые функции I 197—199  [c.393]

В К. изучаются и различного рода дефекты крист, решётки центры окраски, вакансии, дислокации, дефекты упаковки, границы крист, блоков, зёрен, домены и т. д.) и их влияние на физ. св-ва кристаллов (на пластичность, прочность, электропроводность, люминесценцию, механич. добротность и т. д.). К задачам К. относится также поиск новых перспективных крист, материалов.  [c.326]

Электропроводность полупроводников обычно зависит от наличия в них примесей и дефектов решетки и в определенном температурном интервале быстро увеличивается с ростом температуры. В гл. 3 мы показали, что примеси элементов П1 и V групп в решетке элементов IV группы являются соответственно акцепторами и донорами электронов. В полупроводниковых соединениях соответствующие примеси ведут себя аналогично. Вакансии также относятся к числу дефектов, оказывающих влияние на электропроводность. Энергию, необходимую для отрыва электрона от донора или присоединения электрона к акцептору, называют энергией ионизации примеси или дефекта. Энергетические уровни простых доноров и акцепторов расположены в запрещенной зоне, вблизи зоны проводимости и валентной зоны соответственно (рис. 37), а энергия ионизации определяется как разность энергии между примесным уровнем и соответствующей зоной. Если в кристалле одновременно присутствуют доноры и акцепторы электронов, то электроны с донорных уровней перейдут на акцепторные и не дадут никакого вклада в электропроводность поэтому число примесных носителей тока при одновременном присутствии доноров и акцепторов определится как (Ш]—[Л]), т. е. как разность концентраций доноров и акцепторов. Если Ш]>>ГЛ], полупроводник относится к  [c.72]


Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

При пластической деформации также возрастает концентрация точечных дефектов — вакансий и междоузельных атомов и дефектов упаковки решетки. Неравновесная концентрация образовавшихся вакансий С приближенно может быть оценена по соотношению  [c.510]

С другого стороны, и пластическая деформация, и собственно разрушение являются по своей физической природе локальными процессами, и эта локализация пластической деформации и разрушение имеет свои специфические особенности на каждом структурном уровне. На микроуровне - уровне дефектов структуры (вакансий, дислокаций и т.д.) - развиваются свои процессы накопления микроповреждений, обусловленные перераспределением дефектов и увеличением плотности. Причем, поля внутренних напряжений на разных структурных уровнях также существенно различны и имеют разную физическую природу. Неодинаковы и концентраторы напряжений. На микроуровне это могут быть внедренные атомы, атомы замещения, дислокационные петли и  [c.242]

Итак, особенность структуры поверхностного переходного слоя заключается в наличии зоны скопления дислокаций совместно с вышележащей пористой зоной, насыщенной вакансиями. Структура вещества переходного слоя, а также скоплений данных дефектов носит фрактальный характер.  [c.121]

ТОЧЕЧНЫЕ ДЕФЕКТЫ. Точечные дефекты — дефекты, размеры которых в трех измерениях по порядку величины сопоставимы с размером атома. К ним относятся вакансии (дефекты Шоттки), т. е. атомы, находящиеся в междоузлиях, примесные атомы внедрения и замещения, имеющие размер, отличающийся от размера основных атомов, образующих решетку, а также комбинация этих несовершенств.  [c.27]

Упрочнение металла при наклепе объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, междоузельных атомов), а также торможением дислокаций в связи с измельчением блоков и зерен, искажением кристаллической решетки В результате наклепа образуется текстура, обладающая значительной анизотропией свойств В некоторых случаях наклеп является единственным способом упрочнения металлов и сплавов, которые не упрочняются термической обработкой, например, чистые металлы, однофазные сплавы твердых растворов.  [c.26]

Точечные дефекты Шоттки и Френкеля оказывают большое влияние на многие процессы, происходящие в металлах будучи центрами рассеяния носителей, понижают их подвижность. Эти дефекты могут служить источниками носителей, т. е. действовать подобно донорам и акцепторам. Они влияют на процессы пластической деформации при низких и высоких температурах, а также на магнитные свойства. Большое число вакансий может быть получено при резком охлаждении (закалке) нагретого металла,  [c.32]

Тепловой эффект может вызвать процесс диффузии вакансий и внедренных атомов, изменяющий тонкую структуру и свойства металлов. Б металле появляются поры, которые являются зародышами будущих микротрещин. Тепловой эффект может привести также к рекомбинации пар Френкеля с частичным исчезновением этого дефекта.  [c.40]

Второй способ повышения реальной прочности металлов заключается в изменении структурного состояния материала при заданном постоянном уровне сил межатомных связей. Низкие значения прочности технических ЛОО металлов и сплавов объясняются неоднородностью структуры — наличием неравномерно распределенных несовершенств кристаллического строения (дислокаций, вакансий, чужеродных атомов) и границ зерен, а также металлургических дефектов (пор, химической неоднородности и т. д.). Это приводит к резкому снижению энергоемкости металла ( мех вследствие неоднородного характера поглощения энергии различными объемами металла, т. е. к уменьшению величин 1 5 и п [см. уравнение (10)].  [c.22]


Нетрудно убедиться в том, что формулы типа (3,67) справедливы в случаях вакансии и атома примеси на узле. Формулы (3,66) и (3,67) могут быть легко обобщены [43] также на случай, когда в кристалле имеется не один, а несколько одинаковых точечных дефектов с небольшой относительной концентрацией, занимающих ряд положений Г(.  [c.75]

Применение методов машинного моделирования точечных дефектов привело также к значению изменения объема, вызванного вакансией в меди, равного — 0,48 а [53] и близкого к полученному в [52].  [c.91]

По такого типа формулам можно провести численные оценки энергии образования точечных дефектов с применением как аппроксимации энергий взаимодействия атомов конкретными потенциалами, так и метода разложения смещений в ряды Фурье, а также с использованием найденных величин атомных смещений (см. 3). Эти оценки показали [60, 63], что энергия релаксации рел в случае вакансии составляет небольшую часть от энергии образования (порядка нескольких процентов). Лишь в случае внедренного атома матрицы она мон ет достигать величины 60% от Е , При этом главная часть рел обусловлена смещениями лишь ближайших к дефекту атомных слоев. Большие значения рел для вакансии были найдены в [56].  [c.100]

Из сказанного следует, что механизм окисления металла во многом зависит от условий диффузии компонентов в оксидной пленке. Твердофазная диффузия веществ в твердом теле (в том числе и в оксидных пленках) определена наличием в ньм несовершенств и дефектов. Несовершенства в твердом теле разделяются на две следующие категории точечные дефекты или дефекты решетки, линейные и поверхностные дефекты. К точечным дефектам относятся вакансии, внедренные атомы и атомы, занимающие не свои узлы. Линейные и поверхностные дефекты включают дислокации, границы зерен,. а также внутренние и наружные поверхности.  [c.48]

При изучении радиационных последствий обычно различают так называемые необратимые (остаточные) и обратимые (переходные) эффекты. К остаточным нарушениям относят перегруппировку атомов в решетке (образование вакансий, междоузлий, дислокаций), а также внедрение инородных атомов, например, в результате ядерных реакций. Обратимые нарушения являются следствием перехода электронов или дырок в неравновесное состояние, что обычно приводит к ионизации. Благодаря относительно большой подвижности электронов и дырок равновесное состояние быстро восстанавливается после прекращения облучения. Б дальнейшем, если специально не оговаривается другое, под радиационными дефектами мы будем понимать необратимые нарушения.  [c.278]

Вместе с тем полагая, что межзеренные границы имеют упорядоченное строение, в них можно рассматривать существование нарушений этого строения. Эти дефекты могут быть аналогичны решеточным, но существуют и специфические зернограничные дефекты. Например, в границах зерен могут, присутствовать вакансии и межузельные атомы. Как показано путем машинного моделирования в работах [169, 170], несмотря на большую рыхлость структуры границ по сравнению с совершенной решеткой, зернограничные вакансии являются вполне определенным дефектом — отсутствующим атомом, хотя этот дефект и может быть больше размазан в границе, чем в совершенной кристаллической решетке. Межузельный атом также является вполне определенным дефектом в границе, хотя и его релаксация в границе больше чем в совершенной решетке [169]. Прямые наблюдения межузельных атомов, возникающих при облучении в границах  [c.90]

По теории Кульман-Вильсдорф предпочтение отдается пересечению дислокаций с дислокационными сплетениями, также наблюдаемыми при электронномикроскопических исследованиях. Механизм образования дислокационных сплетений называют процессом ветвления . Он заключается в том, что движущиеся дислокации оставляют за собой пересекаемые дефекты, в результате чего позади движущейся дислокации образуются дислокационные диполи, вакансий и небольшие дислокационные петли, которые возникают в результате осаждения вакансий. Указанные дефекты искривляют прямолинейные дислокации этому способствует также поперечное скольжение. В конце концов первоначальная форма прямолинейных дислокаций настолько изменяется, что они принимают вид сплетений. Дислокационные сплетения распределены неравномерно. Поэтому на стадии / упрочнения дислокации заполняют места между сплетениями, т. е. свободные области кристалла, создавая квазиравномерную плотность сплетений. Затем на стадии II плотность сплетений в результате пересечения с движущимися дислокациями возрастает, расстояние между сплетениями уменьшается, вызывая рост деформирующего напряжения. При этом стадия III объясняется преобладанием поперечного скольжения.  [c.213]

Основное предположение колебательной теории Линдеманна [10], развитой Гилварри [7], заключается в том, что плавление начинается тогда, когда амплитуда тепловых колебаний атомов достигает некоторой критической доли расстояния между равновесными положениями соседних атомов. Недавно предложенная модель В. И. Владимирова [1], где в качестве основных дефектов рассматриваются вакансии, также дает разумные предсказания параметров плавления.  [c.45]

Установлено, что для диффузии большое значение имеют вакансии и их ассоциации (бивакансии, комплексы вакансия — атом примеси), а также дефекты, являющиеся их источниками (линейные и поверхностные).  [c.152]

Кристаллографич. структура и фазовый соста С. определяются, т. о., в основном кристаллич. и электронной структурами компонентов и соотпошеннем между их атомными радиусами. Помимо этого, микро-и макроструктура С. зависит от условий кристал,ци-зации (см. Структура металлического слитка) и физ. воздействий (механич,, термич,, радиационных и др.), к-рым С, подвергался после затвердевания. Они определяют величину, форму и взаимное расположение кристаллитов и строение границ между ними, а также дефекты (вакансии, межузельные атомы, дислокации и т, и,) в самих кристаллитах. Для создания или выбора С. с необходимыми свойствами важно знать, помимо состояния диаграммы, причины появления тех или иных свойств в зависимости от состава и вида проведенной обработки.  [c.51]


ДЕФЕКТЫ кристаллической решётки (от лат. (1е ес1из — недостаток, изъян), любое отклонение от её идеального периодич. ат. строения. Д. могут быть либо атомарного масштаба, либо макроскопич. размеров. Образуются в процессе кристаллизации, под влиянием тепловых, механич. и электрич. воздействий, а также при облучении нейтронами, эл-нами, рентг. лучами, УФ излучением (см. Радиационные дефекты), при введении примесей и т. п. Различают точечные Д., линейные Д., Д.,образующие в кристалле поверхности, и объёмные Д. Простейшим точечным Д. явл. вакансия — узел крист, решётки, в к-ром отсутствует атом. В кристаллах могут присутствовать чужеродные атомы или ионы, замещая осн. ч-цы, образующие кристалл (примесные), или внедряясь между ними (междоузлия). Точечными Д. явл. также собств. атомы или ионы, сместившиеся из норм, положений (междоузельные атомы), а также центры окраски — комбинации вакансий с электронами проводимости или с дырками и др. В ионных кристаллах точечные Д. возникают парами. Две вакансии противоположного знака образуют т. н. дефект Шотки. Пара, состоящая из междоузельного иона и оставленной им вакансии, наз. дефектом Френкеля.  [c.152]

Дрейф точечных дефектов (вакансий) в образующихся локальных полях неоднородных напряжений способствует локализации деформации в переходных зонах между недеформируемыми структурными элементами и активизирует квазивязкие диффузионные механизмы переориентации кристаллической решетки в процессе диссипации энергии. Так, в экспериментах при растяжении тонкой бериллиевой фольги [80] наблюдали, что продвижение трещины происходит за счет образования микропор по границам ячеек. При этом активизируется процесс притяжения дислокаций к поверхности трещины, что также является самовоспроизводящимся процессом формирования будущей поверхности у вершины трещины.  [c.130]

К точечным дефектам относят вакансии (вакантные узлы кристаллической решетки ), атомы в междоузлиях, атомы примесей в узлах или междоузлиях, а также сочетания примесь—вакансия, примесь—примесь, двойные и тройные вакансии ди- и тривакан-сии) и др.  [c.85]

Во многих твердых телах при комнатной или даже более низкой температуре первичные дефекты (вакансии и мел<доузельные атомы), мигрируя по кристаллу, могут аннигилировать путем рекомбинации, а также объединяться в более устойчивые вторичные дефекты. Окончательный состав дефектов, их концентрация и распределение по глубине мишени зависят от числа и распределения первоначально смещенных атомов, а также от природы кристалла.  [c.96]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Дислокации — не единственные дефекты кристалла известны также вакансии и межузельные атомы, образующиеся при переходе атома из узла кристаллической решетки в пространство между узлами. Межузельные атомы образуются в кристалле самопроизвольно, вследствие термических флуктуаций. Поэтому число их зависит от температуры при пониже1п и температуры число вакансий и межузельных атомов в чистом, т. е. не содержащем примесей, кристалле убывает до нуля. Дислокации, наоборот, не исчезают с уменьшением температуры. Можно считать, что число дислокаций с изменением температуры меняется незначительно, если только температура достаточно удалена от температуры плавления. При приближении к точке плавления число дислокаций быстро уменьшается. Дислокации не возникают в кристалле сами по себе, они образуются в процессе образования кристалла или в результате внешнего воздействия на кристалл. Дислокации являются важными характеристиками кристаллического состояния. В ядре дислокации (т. е. в окрестностях ее оси) атомы смещаются из положения равновесия, и в решетке возникают внутренние напряжения. С этой точки зрения дислокацию можно считать источником внутренних напряжений.  [c.368]

Как известно [75, 76], пластическая деформация материалов приводит к значительному увеличению плотности таких дефектов, как дислокации (или их скопления), дефекты упаковки, вакансии (или нх комплексы), междоузельные атомы и т.д. Поля искажений этих дефектов кристаллического строения вызывают смещения атомов из узлов, что приводит к упругим микродеформациям. Если размер блоков достаточно мал (-10" см), это приводит к заметному расширению дифракционных пиков на дифрактограммс. Наличие в поликристал-лическом образце микроискажений (т.е. присутствие кристаллов с вариацией периода решетки) также приводит к расширению пиков на дифрактограмме. В настояи ,ее время развит1)1 три метода (аппроксимации или интегральной ширины, гармонический анализ формы рентгеновских линий, метод моментов), основанные на анализе формы дифракционных линий, с помощью которых могут быть найдены размеры блоков и величина микродеформаций в случае их раздельного и совместного присутствия в исследуемом образце. Зачастую имеется однозначная связь между величиной микродеформаций и плотностью хаотически распределенных дислокаций.  [c.160]

К дефектам относятся также вакансии, т. е. не занятые атомом узлы решетки (рис. 1). Сама поверхность кристалла таклш яв.ляется нарушением правильности его периодического строения.  [c.23]

Многие свойства металлов и сплавов сильно зависят от наличия, количества и распределения различных дефектов кристаллической решетки. Вакансии на узлах обуславливают диффузию в металлах и сплавах замещения. Внедренные в междоузлия атомы, также являющиеся точечными дефектами решетки, широко используются на практике для создания материалов с требуемым сочетанием свойств (большое влияние, которое оказывают внедренные атомы на свойства сплавов, уже было рассмотрено во введении). Дислокации обеспечивают протекание процессов пластической деформации. Всевозможные дефекты решетки, являющиеся препятствиями дви-зкепию дислокаций, используются для создания высокопрочных материалов. Электрооопротивление металла 3 л. л. Смпгипп  [c.33]


Джеймс и Ларк-Гурвиц [44] предложили модель, в которой акцепторы отождествлены с вакансиями, а доноры — с междоузлиями. Они также показали, что в случае изолированных дефектов эти узлы могут быть многократно ионизованы в зависимости от положения уровня Ферми. Хотя эта модель очень полезна при качественной интерпретации экспериментов, она не позволяет объяснить все опытные результаты количественно. Это, вероятно, обусловлено тем, что дефекты концентрируются в малой области вблизи мест первичного акта взаимодействия  [c.283]

Локальные давления в кристаллической решетке возникают также в окрестности точечных дефектов — вакансий и примесных атомов. Связанная с вакансиями избыточная энергия решетки не превосходит 1 эВ на одну вакансию, т. е. почти на порядок меньше, чем для единичной Дислокации. Хотя суммарная энергия кристалла, связанная с вакансиями, может достигать существенной величины, эффект их влияния на растворение ничтожно мал. Действительно, подстановка этого значения энергии моновакансии в уравнения, аналогичные (111), дает совершенно ничтожную величину эффекта, а образование дивакансий, тривакан-сий и т. д. ничего не меняет, поскольку в отличие от плоских скоплений дислокаций энергия каждой кооперированной вакансии меньше, чем изолированной. Во всяком случае эффект не может превосходить величины, соответствующей равномерно распределенным в объеме дислокациям.  [c.114]

Известно, что кристаллы металлов имеют дефекты. К ним относятся вакансии, т. е. пустые (незанятые атомом) места в узлах кристаллической решетки, а также смещения, обусловл н-ные сдвигом атома из узла в межузлие. G повышением температуры количество вакансий и смещений увеличивается. Металлы содержат также примеси инородных атомов, вызывающие искажения кристаллической решетки. К наиболее важным дефектам кристаллической решетки следует отнести дислокации (линейные дефекты, имеющие значительно большую протяженность в одном измерении по отношению к любому другому, перпендикулярному к нему). Они бывают краевыми, винтовыми, смещенными И др. ,  [c.11]

К точечным дефектам решетки относятся также сложные точечные дефекты, представляющие собой сочетания различных точечных несовершенств ( облака вакансий или атомов в междоузлиях, парный дефект Френкеля , дефект Шотки). Существование подобных сложных точечных дефектов твердо не установлено, но рассматривается как вероятное.  [c.11]


Смотреть страницы где упоминается термин Вакансии II 233, 234. См. также Дефекты : [c.38]    [c.38]    [c.89]    [c.299]    [c.24]    [c.30]    [c.31]    [c.188]    [c.273]    [c.24]   
Физика твердого тела Т.2 (0) -- [ c.0 ]



ПОИСК



Вакансии

Вакансии II 233, 234. См. также Дефекты в кристаллах



© 2025 Mash-xxl.info Реклама на сайте