Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вакансии и примеси

Электронно-релаксационная поляризация характерна для диэлектриков с высоким показателем преломления, большим внутренним полем и электронной электропроводностью например, диоксид титана, загрязненный примесями Nb" , Са" , Ва" диоксид титана с анионными вакансиями и примесью ионов некоторые соединения на основе оксидов металлов переменной валентности — титана, ниобия, висмута.  [c.20]

Мы рассматривали взаимодействие между вакансиями и дивакансиями в золоте высокой чистоты, а для загрязненного золота, кроме того, рассматривали взаимодействие между вакансиями и примесями и между дивакансиями и примесями. Примененный метод раС" чета достаточно подробно описан в книге Дамаска и  [c.15]


На самодиффузию в полупроводниках влияют примеси. Характер влияния определяется не только размерным фактором АЯ/Я, где Я — ковалентный радиус атомов основного вещества, а АЯ — разность ковалентных радиусов основного вещества и примеси (упругие напряжения ведут к перераспределению точечных дефектов). Существенную роль играет непосредственное влияние примесей на концентрацию вакансий. Коэффициент диффузии тем больше, чем выше концентрация вакансий (см. (8.10)). В полупроводниках между концентрацией электрически неактивных и электрически активных вакансий и примесей существует динамическое равновесие. Концентрации заряженных вакансий и примесей взаимосвязаны.  [c.309]

Дислокации представляют собой дефекты кристаллического строения, вызывающие нарушения правильного расположения атомов на расстояниях, значительно больших, чем постоянная решетки. Они возникают случайно при росте кристалла и термодинамически неравновесны. Причинами образования дислокаций могут быть также конденсация вакансий, скопление примесей, действие высоких напряжений. Процесс преобразования скоплений точечных дефектов в линейные идет с уменьшением свободной энергии кристалла.  [c.470]

В реальных кристаллах всегда имеются примеси чужеродных атомов. При наличии точечных дефектов (вакансий и междоузельных атомов) возможно образование комплексов дефект — примесь. Естественно, что образование таких комплексов определяется как концентрацией примеси, так и концентрацией дефектов. В условиях термического равновесия концентрацию таких комплексов можно определить таким же методом, каким мы пользовались при рас-  [c.92]

В энергию связи дефекта с примесью входят две основные составляющие энергия электростатического взаимодействия между примесью и дефектом и изменение энергии деформации вокруг примесного атома. Если атом примеси отличается по размеру от атома растворителя, то деформация окружающей его области может быть уменьшена при помещении дефекта рядом с этим ато-, мом. Следует ожидать, что вакансии будут притягиваться к зонам сжатия, а междоузельные атомы — к зонам растяжения. Расчет энергии связи дефекта и примеси представляет собой сложную задачу,  [c.93]

Нетрудно убедиться в том, что формулы типа (3,67) справедливы в случаях вакансии и атома примеси на узле. Формулы (3,66) и (3,67) могут быть легко обобщены [43] также на случай, когда в кристалле имеется не один, а несколько одинаковых точечных дефектов с небольшой относительной концентрацией, занимающих ряд положений Г(.  [c.75]


Время жизни неосновных носителей более чувствительно к облучению, чем удельная электропроводность. Если, например, ввести избыток дырок в полупроводник и-типа (в этом случае дырки являются неосновными носителями, а электроны — основными), то они исчезнут в результате рекомбинации с электронами, но это произойдет не мгновенно. Среднее время, необходимое для рекомбинации неосновного носителя с основным, называется временем жизни неосновного носителя. Эти свойства особенно важны во многих полупроводниковых приборах, особенно в транзисторах. Механизм рекомбинации определяется примесями и другими типами дефектов. В приведенном выше примере дырки и электроны рекомбинируют после захвата дефектами, которые называют центрами рекомбинации. Очень эффективными центрами рекомбинации являются вакансии и междоузлия.  [c.283]

Таким образом, в облученном кристалле движущимся дислокациям необходимо преодолевать кроме обычного рельефа Пайерлса и сил взаимодействия с другими несовершенствами исходной структуры еще целый спектр барьеров радиационного происхождения изолированные точечные дефекты и их скопления, кластеры и дислокационные петли вакансионного и межузельного типов, поры, выделения, возникающие в результате ядерных превращений. В табл. 6 приведена примерная классификация барьеров по степени взаимодействия с дислокациями. Видно, что скопления вакансий и атомы растворенного вещества с симметричными полями напряжений ведут себя, как сравнительно слабые барьеры для движения дислокаций. Дефекты с тетрагональными полями (атомы внедрения в ОЦК-ме-таллах, малые призматические петли, комплексы кластер — атом примеси) являются промежуточными барьерами по сопротивлению  [c.62]

Любой металл, даже химически чистый, содержит примеси инородных атомов. Размеры и свойства атома примеси отличаются от размеров и свойств основного металла. Поэтому инородные атомы вызывают искажения кристаллической решетки. Инородные атомы, так л<е как вакансии и смещения, относятся к точечным дефек-  [c.13]

Для повышения жаропрочности стали необходимо обеспечить торможение дислокаций и диффузии вакансий как по границам, так и в объеме зерна. Дислокации хорошо затормаживаются мелкодисперсными карбидами и интерметаллидами. Легирование твердого раствора элементами, повышающими жаропрочность, приводит к усилению межатомных связей, уменьшает диффузионную подвижность вакансий и тем самым замедляет диффузионную ползучесть. Сильные карбидообразователи — хром, молибден, титан, ниобий — связывают углерод в прочные карбиды, затрудняют его диффузию и способствуют получению стабильной структуры. Вследствие искажений кристаллической решетки в районе дислокаций последние очень активно притягивают атомы примесей. Вокруг дислокаций особенно легко концентрируются атомы элементов, образующих растворы внедрения,— углерода, азота, бора и др. Поэтому дислокации часто оказываются местами зарождения частиц второй фазы.  [c.83]

В области повышенных температур (40—200° С) межкристал-литные трещины зарождаются быстрее в цинке с примесями (98,7 %), которые могут образовывать поры с вакансиями и перемещаться к границам зерен. Вследствие торможения миграции границ и уменьшения разности прочности тела зерна и его границы деформация сосредоточена по границам зерен, что приводит к образованию клиновидных трещин особенно вблизи тройных точек. Такой вид разрушения весьма характерен для ползучести и его возникновение связывают с проскальзыванием по границам зерен, которое, вероятно, вызвано переползанием дислокаций вдоль границ зерен и инициируется повышенной концентрацией вакансий.  [c.114]

Однако для примесей ситуация меняется. Если скорость обмена между вакансией и примесным атомом т намного больше, чем между вакансией и атомом растворителя oi, то скорость переноса примеси будет определяться не сог, а ь так как только обмен вакансии с атомом растворителя позволит примесному атому сдвинуться с места. Соответственно коэффициент диффузии Z>2 а ь а не оог- И если записать его как D2 /из, то f поскольку (02 > (й . Таким образом, эффект корреляции  [c.107]

В работе [191] показано, что введение в никелевые слол<но-легированные сплавы малых количеств редкоземельных других элементов (церия, лантана, неодима, циркония) замедляет коагуляцию при старении промежуточной фазы у (вывод сделан на основе статистической обработки электронномикроскопических снимков) и приводит к увеличению времени до разрушения при высоких температурах. Специальные исследования с помощью радиоактивного никеля показали, что при таком легировании заметно уменьшается скорость самодиффузии никеля по границам зерен. Таким образом, введение небольших количеств третьего элемента оказывает сложное влияние на кинетику старения кинетическое, обусловленное взаимодействием примесей с вакансиями, и термодинамическое, связанное с изменением энергии на границе матрицы и выделений.  [c.242]


Благодаря тепловому движению атомов вакансии, смещения и примеси могут изменять свое положение, т. е. перемещаться в решетке.  [c.22]

Зерна наклепанного поликристаллического металла разламываются на ряд отдельных блоков (фиг. 40) с относительно совершенной структурой решетки, соединенных искаженными областями границ, на которых и сосредоточено большое количество дислокаций и других несовершенств, расположенных произвольно. Образование такой структуры у наклепанного металла является результатом сосредоточения дислокаций, вакансий, смещений и примесей на полосах скольжения. Размер блоков уменьшается по мере увеличения обжатия при пластической деформации и изменяется от 0,6 мк для меди до 6 мк для свинца и соответствует наименьшему расстоянию между полосами скольжения. Для алюминия, прокатанного при комнатной температуре, это расстояние равно 2 мк, что согласуется с измерениями, проведенными как под электронным, так и под оп ическим микроскопом.  [c.58]

Адсорбция примесей вызывает нарушения в построении кристаллической решетки, которая содержит точечные (вакансии и примеси), линейные (краевые и винтовые дислокации) и плоскостные дефекты. Высокая концентрация вакансий обуславливает резкое повышение скорости диффузионных процессов, количество дефектов в кристаллической решетке увеличивается. Дефекты кристаллической решетки оказывают существенное влияние на физические свойства образующихся осадков. В некоторых случаях на электроде возникает жидкоподобная структура — металлические стекла. Не имея границ зерен, они являются однородными метастабильными системами и часто обладают более высокой коррозионной стойкостью по сравнению с кристаллическими осадками такого же химического состава.  [c.267]

В силу кулоновского взаимодействия между электрически заряженными вакансиями и примесями вокруг положительно заряженных донорных примесей (VA группы) в рещетке Ge создаются области, обогащенные вакансиями, а вокруг отрицательно заряженных акцепторных примесей (IIIA группы) — области, обедненные вакансиями. Это значит, что перемещение акцепторных примесей будет затруднено, что и наблюдается в Ge.  [c.311]

То, что а и б являются характеристиками термометра, естественно следует из теории, обсуждавшейся ранее. Согласно (5.1), наклон кривой зависимости сопротивления от температуры обратно пропорционален полному времени релаксации т. Основная часть т — это вклад элоктрон-фононных взаимодействий, который обратно пропорционален температуре, однако сюда входят также времена релаксации для взаимодействий электронов с примесями, вакансиями и границами зерен. Все эти вклады зависят также от температуры, и поэтому величина а должна служить и служит чувствительным показателем чистоты проволоки и качества ее отжига. Отклонение от линейности б является функцией коэффициентов при Р и членах более вы-  [c.202]

Дислокации — не единственные дефекты кристалла известны также вакансии и межузельные атомы, образующиеся при переходе атома из узла кристаллической решетки в пространство между узлами. Межузельные атомы образуются в кристалле самопроизвольно, вследствие термических флуктуаций. Поэтому число их зависит от температуры при пониже1п и температуры число вакансий и межузельных атомов в чистом, т. е. не содержащем примесей, кристалле убывает до нуля. Дислокации, наоборот, не исчезают с уменьшением температуры. Можно считать, что число дислокаций с изменением температуры меняется незначительно, если только температура достаточно удалена от температуры плавления. При приближении к точке плавления число дислокаций быстро уменьшается. Дислокации не возникают в кристалле сами по себе, они образуются в процессе образования кристалла или в результате внешнего воздействия на кристалл. Дислокации являются важными характеристиками кристаллического состояния. В ядре дислокации (т. е. в окрестностях ее оси) атомы смещаются из положения равновесия, и в решетке возникают внутренние напряжения. С этой точки зрения дислокацию можно считать источником внутренних напряжений.  [c.368]

Выше были рассмотрены случаи, когда в идеальном кристалле находится только один точечный дефект (или несколько невзаимодействующих дефектов). Перейдем теперь к рассмотрению взаимодействия точечных дефектов. Следует отметить, что дефекты могут быть двух типов 1) дефекты, которые взаимодействуют и не находясь в кристалле (атомы примеси замещения и внедрения), и 2) дефекты, для которых вне метал.лической матрицы вообще но имеет смысла говорить о взаимодействии (вакансии, пары из вакансии и атома примеси). Металлическая матрица вызывает существенное изменение взаимодействия в первом случае и полностью определяет его во втором. В частности, деформация решетки, вызванная дефектами, ггриводит, как уже отмечалось во введении, к их деформационному взаимодействию, обладающему весьма универсальным характером.  [c.113]

Теоретическая модель. Реальный кристаллический материал даже после хорошего отжига содержит большую плотность дислокаций, которые закреплены различными по своей природе препятствиями. Причем препятствия можно разделить на сильные и слабые. К сильным препятствиям, например, относятся дислокационные узлы при пересечении дислокаций, кристаллические образования вторичных фаз, выпавших из твердого раствора, границы зерен и т. д. Отрезок дислокации, заключенный между двумя соседними препятствиями, будем называть дислокационной петлей. К слабым закреплениям можно отнести точечные дефекты (примеси, вакансии и меж-узельные атомы и т. д.), которые закрепляют дислокации по механизму Коттрелла, Судзуки или Сноека. Отрезки дислокации, заключенные между двумя соседними слабыми закреплениями, будем называть дислокационными сегментами.  [c.165]

Известно, что кристаллы металлов имеют дефекты. К ним относятся вакансии, т. е. пустые (незанятые атомом) места в узлах кристаллической решетки, а также смещения, обусловл н-ные сдвигом атома из узла в межузлие. G повышением температуры количество вакансий и смещений увеличивается. Металлы содержат также примеси инородных атомов, вызывающие искажения кристаллической решетки. К наиболее важным дефектам кристаллической решетки следует отнести дислокации (линейные дефекты, имеющие значительно большую протяженность в одном измерении по отношению к любому другому, перпендикулярному к нему). Они бывают краевыми, винтовыми, смещенными И др. ,  [c.11]


Зависимость сопротивления деформированию и разрушению от числа искажений в кристаллической решетке. Атомная решетка реального кристаллического тела имеет разнообразные искажения (дефекты), оказывающие влияние на его прочность. К таким дефектам кристаллического строения металлов и сплавов относятся вакансии, атомы примесей, дислокации, границы зерен и блоков мозаики и микродефекты структуры. Решающая роль в процессах пластической деформацтг тг разрушештя--ттртгадлежит ди юка- -циям.  [c.9]

Изменение физических свойств облученного материала обусловлено дальнейшей жизнью облака элементарных дефектов (вакансий и межузлий), составляющего первоначальное радиационное повреждение термической и радиационно-стимулированной диффузиями дефектов, медленным отжигом, кластеризацией и взаимодействием с дислокациями, границами зерен, выделениями новых фаз, примесями выделения и т. д. Характерные времена этих процессов на много порядков превышают характерные времена образования первичных повреждений.  [c.21]

В отличие от закалки металлов с высоких температур при облучении образуется одинаковое количество вакансий и межузельных атомов. Если бы процесс нарушений при облучении сводился только к образованию пар Френкеля и их рекомбинации, то можно было бы относительно просто представить условия равновесной рекомбинации антинарушений и установить период самовосстановления структуры и свойств материала. В какой-то мере такая картина изменения дефектной структуры, по-видимому, может реализоваться после облучения до малых доз совершенных кристаллов ( усов ). В действительности даже при наличии только изолированных точечных дефектов в решетке реальных кристаллов наряду с рекомбинацией протекают более сложные процессы взаимодействия точечных дефектов друг с другом с образованием двойных, тройных и т. д. комплексов, кластеров. Каждый из первичных дефектов может взаимодействовать с примесными атомами, дислокациями, границами раздела. В результате этого возникают комплексы вакансия — атом примеси, внедренный атом — атом примеси, пороги и суперпороги на дислокациях, изменяется перераспределение элементов в растворе, состояние границ раздела, конфигурация дислокаций.  [c.60]

Макроскопич. структура реальных металлов (дефекты и примеси) и сплавов характеризует степень их отклонения от идеальной периодичности кристаллич. решётки. Спектр дефектов решёток металлов и сплавов включает вакансии, дислокации, межзёренные границы, поры, включения, трещины и т. п. Дислокац. представления являются основой теории прочности и пластич-  [c.112]

Метод исследований с помощью ионного микроскопа позволяет обеспечить более высокую разрешающую способность (<1 нм). Ионный проектор дает возможность наблюдать отдачь-ные атомы матрицы и примесей, вакансии в решетке и межузельные атомы, атомную структуру границ зерен, структуру ядра дислокации, эффект легирования (упорядочение, разупоря-дочение твердых растворов).  [c.315]

Как и в случае кристаллических модификаций 8102, для аморфной фазы большое внимание уделено рассмотрению дефектных состояний и интерпретации явлений, связанных с присутствием в п-8Ю2 различных дефектов (примесей, вакансий и т. д.). Общая методология подобных работ описана нами в разделе 7.3. Наиболее активно обсуждаются примесные аморфные состояния с участием водорода [151, 152], тугих легких р-элементов [103, 117, 120, 121, 129]. Авторы [128][ предприняли попытку изучить роль дефектов на поверхности а-8Ю2 в эффектах сегрегации адатомов металлов.  [c.170]

Введем насколько обозначений. Пусть N — общее число узлов решетки. Тогда на долю каждой из подрешеток приходится по N/2 узлов. Б изинговской модели каждый узел занят атомом меди или цинка (нет ни вакансий, ни примесей). Поэтому сплав эквиатомной концентрации состоит точно из N/2 атомов цинка и N/2 атомов меди. Допустим, что из N/2 атомов цинка Nza оказываются на своей подрешет-ке. Тогда за меру порядка (она называется параметром дальнего порядка) принимается величина  [c.176]

Любой металл, даже химически чистый, содержит примеси инородных атомов. Каждый атом этой гаримеси имеет размеры и свойства, отличающиеся от размеров и свойств основного металла. Поэтому инородные атомы вызывают искажения кристаллической решетки. Протяженность искажений во всех направлениях мала — порядка одного-двух параметров решетки. Инородные атомы, так же как вакансии и смещения, относятся к точечным дефектам. Пр,и рассмотрении строения чистого металла на первый взгляд кажется, что говорить о примесях вряд ли имеет смысл. Ведь содержание инородных атомов по отношению к общему их количеству мало. Например, в химически чистом алюминии содержится 99,999% алюминия и только 0,001% примесей. Но если посмотреть, какое же количество инородных атомов находится в I см такого алюминия, то получится внушительная цифра 3—6-10 атомов.  [c.17]

Наличие большого количества дислокаций и других несовершенств на границах зёрен и блоков, увеличиваюш,их там запас свободной энергии, способствует диффузии в них атомов примесей, вакансий и смеш,ений. ,,  [c.37]

Диффузионные и самодиффузионные процессы, необходимые для перемещения препятствий или обтекания дислокациями препятствий (фиг. 235, а и б), требуют восхождения дислокаций, т. е. перемещения их в направлениях, перпендикулярных к плоскостям скольжения и образования блочной структуры. Для этого необходима диффузия препятствий и атомов примесей и само-диффузия вакансий и промежуточных атомов. Процесс восхождения дислокаций происходит гораздо труднее, чем их перемещение на плоскостях скольжения, поэтому от него главным образом и зависит  [c.394]

В поликристаллических металлах процесс ползучести осложняется наличием границ между зернами и блоками, которые могут влиять на нее двояко. При температуре ниже равнопрочной благодаря наличию на этих границах несовершенств решетки и примесей, они препятствуют перемещению дислокаций. Наоборот, при температуре выше равнопрочной границы между зернами и блоками оказываются наиболее слабыми местами, по которым легче протекает пластическая деформация, облегчается протекание диффузии и самодиффузии благодаря перемещению сосредоточенных на них вакансий. Поэтому разрушение при высоких температурах, как правило, происходит по границам зерен, при более низких температурах и комнатной обычно трещины идут через зерно. В связи с этим крупнозернистые металлы и сплавы при более высокой температуре более прочны, чем мелкозернистые при менее высокой и комнатной температуре, наоборот, выгоднее мелкозтнистые.  [c.398]


Смотреть страницы где упоминается термин Вакансии и примеси : [c.131]    [c.222]    [c.23]    [c.172]    [c.482]    [c.93]    [c.218]    [c.59]    [c.176]    [c.627]    [c.680]    [c.655]    [c.21]    [c.394]    [c.13]   
Смотреть главы в:

Квантовая химия в материаловедении  -> Вакансии и примеси



ПОИСК



Вакансии

Взаимодействие вакансий с атомами примеси в разбавленных растворах замещения

Прима

Примеси

САМОДИФФУЗИЯ ПРИМЕСИ В РАЗБАВЛЕННЫХ РАСТВОРАХ ЗАМЕЩЕНИЯ ПРИ ВАКАНСИОННОМ МЕХАНИЗМЕ Равновесие вакансий в чистых металлах



© 2025 Mash-xxl.info Реклама на сайте