Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа движения точки релятивистско

В качестве примера ненатуральной системы можно рассмотреть движение материальной точки в релятивистской теории при отсутствии силового поля. В этом случае движение точки определяется уравнениями Лагранжа, в которых  [c.81]

Эта формулировка, хотя и весьма абстрактна, но имеет и некоторые преимущества. Дело в том, что уравнения Лагранжа не зависят от координатной системы, в чем и заключается их значение, но время в этих уравнениях еще играет особую роль. Напротив, принцип сохранения количества движения и энергии позволяет дать закона.м динамики фор.му, не зависящую от выбора координат пространства-времени. Действительно, если одновременно заменить переменные, относящиеся к параметрам положения системы и ко времени, то достаточно иметь выражение тензора количество движения — энергия в новой системе координат, чтобы получить уравнения движения. Эта схема охватывает, естественно, и релятивистскую механику.  [c.845]


Понятие Л. ф. распространяется также на системы с бесконечным числом степеней свободы — классические поля физические, при этом обобщёнными координатами и импульсами явл. значения ф-ции поля и их производные по времени в каждой точке пространства-времени. Как и в классич. механике, посредством принципа наименьшего действия Л. ф. определяет для поля ур-ния движения. Важным св-вом Л. ф. явл. релятивистская инвариантность её плотности (величины Л. ф. в ед. объёма поля) и др. св-ва её симметрии. Каждой из симметрий соответствует закон сохранения нек-рой физ. хар-ки. Так, неизменности относительно калибровочной симметрии соответствует сохранение заряда и т. д. (см. Сохранения законы). ЛАГРАНЖИАН, аналог Лагранжа функции классич. физ. поля в квант, теории поля (КТП). Ф-ции, описывающие поле, в КТП заменяются соответствующими операторами, так что Л. явл. оператором. Его вид связан с ф-цией Лагранжа для классич. поля соответствия принципом. Л. полностью определяет теорию, т. е. позволяет найти ур-ние для взаимодействующих квант, полей и, в прин-  [c.337]

Сопоставим в заключение методы Гамильтона и Лагранжа. В гамильтоновом формализме основными величинами являются , р, и Н. Гамильтониан можно построить с помощью функции Лагранжа и q и р,. Отсюда непосредственно получаются канонические уравнения и динамические переменные. Однако в гамильтоновом формализме время все же играет особую роль по сравнению с пространственными координатами, являясь, по существу говоря, единственной независимой переменной. С одной стороны, это дает возможность провести далеко идущую аналогию с классической механикой, но, с другой стороны, именно поэтому теория оказывается релятивистски неинвариантной. Напротив, в лагранжевом формализме не вводят функции р,-, Н (хотя это и возможно). В лагранжевом методе исходят из вариационного принципа для лагранжиана системы. Из условий для его экстремума получают уравнения движения, а динамические переменные (энергия — импульс, заряд и т. п.) определяются как инварианты, соответствующие различным преобразованиям системы координат и, в случае теории полей, функций поля. В лагранжевом формализме время входит совершенно симметрично с пространством и теория с самого начала релятивистски ковариантна, но зато аналогия с механикой системы точек оказывается гораздо менее отчетливой.  [c.878]


На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Именно эта возможность и была реализована в 1911 г. Г. Герглотцем , который принял активное участие в разработке релятивистской механики сплошной среды и на этом пути впервые явно получил взаимосвязь Р-сим-метрия — сохранение . Вариационная структура уравнений механики сплошной среды была известна и широко использовалась, начиная с середины XIX в. (Гельмгольц, Кирхгоф, Рэлей, А. Вальтер и др.) . Вариационные принципы в релятивистской форме за пределами электродинамики были сформулированы и широко использованы, прежде всего, Планком, а затем Минковским и др. (механика точки и системы, термодинамика и т. д. ). Поэтому построение релятивистской механики сплошной среды естественно было начать с Р-инвариантного вариационного принципа, переходящего в нерелятивистском случае в соответствующий вариационный принцип классической механики. Герглотц начинает с описания среды в переменных Лагранжа, т. е. рассматривая координаты частиц среды и характеристики движения как функции начальных координат и времени t. Элемент мировой линии двух соседних мировых точек при таком описании выражается посредством квадратичной формы дифференциалов начальных координат и собственного времени = i x  [c.243]


Основные принципы классической механики и классической теории поля (1976) -- [ c.86 ]



ПОИСК



Лагранжа движения

Лагранжево движения

Точка — Движение

Три точки Лагранжа



© 2025 Mash-xxl.info Реклама на сайте